当前位置: 首页 > news >正文

数据结构—数组栈的实现

前言:各位小伙伴们我们前面已经学习了带头双向循环链表,数据结构中还有一些特殊的线性表,如栈和队列,那么我们今天就来实现数组栈。

在这里插入图片描述

目录:

一、
栈的概念
二、
栈的实现
三、
代码测试

栈的概念:

栈的概念及结构
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端
称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则,压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶,出栈:栈的删除操作叫做出栈。出数据也在栈顶。
在这里插入图片描述
栈顶(Top):线性表允许进行插入删除的那一端。
栈底(Bottom):固定的,不允许进行插入和删除的另一端。
空栈:不含任何元素的空表。

栈的实现:

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。
在这里插入图片描述

接口:

// 初始化栈
void STInit(ST* pst);
// 销毁栈
void STDestroy(ST* pst);// 入栈
void STPush(ST* pst, STDataType x);
// 出栈
void STPop(ST* pst);
// 获取栈顶元素
STDataType STTop(ST* pst);// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool STEmpty(ST* pst);
// 获取栈中有效元素个数
int STSize(ST* pst);

这里我们需要三个文件,一个头文件,一个文件用来实现我们的各种接口,一个文件用来测试我们的代码。
在这里插入图片描述

头文件(Stack.h):

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>typedef int STDataType;typedef struct Stack
{int* a;int top;		// 标识栈顶位置的int capacity;
}ST;void STInit(ST* pst);
void STDestroy(ST* pst);// 栈顶插入删除
void STPush(ST* pst, STDataType x);
void STPop(ST* pst);
STDataType STTop(ST* pst);bool STEmpty(ST* pst);
int STSize(ST* pst);

在这里插入图片描述
我们的top是栈顶,如果我们的top=0时,我们指向的就是栈顶元素,如果我们的top=1,那么我们的top指向的就是栈顶元素的下一个位置。

函数实现(Stack.c)

#include"Stack.h"void STInit(ST* pst)
{assert(pst);pst->a = NULL;pst->capacity = 0;pst->top = 0;
}void STDestroy(ST* pst)
{}// 栈顶插入删除
void STPush(ST* pst, STDataType x)
{assert(pst);if (pst->top == pst->capacity){int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);if (tmp == NULL){perror("realloc fail");return;}pst->a = tmp;pst->capacity = newcapacity;}pst->a[pst->top] = x;pst->top++;
}void STPop(ST* pst)
{assert(pst);// 不为空assert(pst->top > 0);pst->top--;
}STDataType STTop(ST* pst)
{assert(pst);// 不为空assert(pst->top > 0);return pst->a[pst->top - 1];
}bool STEmpty(ST* pst);
int STSize(ST* pst);

测试代码(test.c)

int main()
{ST s;STInit(&s);STPush(&s, 1);STPush(&s, 2);STPush(&s, 3);STPush(&s, 4);STPush(&s, 5);while (!STEmpty(&s)){printf("%d ", STTop(&s));STPop(&s);}printf("\n");return 0;
}

我们这里入栈五个数据,当我们的栈里面不为空时,我们就访问栈顶元素,在让栈顶元素出栈。直到我们的栈为空时,就退出循环。
在这里插入图片描述

int main()
{ST s;STInit(&s);STPush(&s, 1);STPush(&s, 2);STPush(&s, 3);printf("%d ", STTop(&s));STPop(&s);printf("%d ", STTop(&s));STPop(&s);STPush(&s, 4);STPush(&s, 5);while (!STEmpty(&s)){printf("%d ", STTop(&s));STPop(&s);}printf("\n");return 0;
}

这里我们可以同时入栈和出栈,我们先入栈1,2,3,在出栈,我们的栈是后入先出,也就是说我们后面入栈的元素在出栈的时候先出栈,我们出栈一个也就是3,再出栈就是2,最后入栈就是4,5。
在这里插入图片描述

相关文章:

数据结构—数组栈的实现

前言&#xff1a;各位小伙伴们我们前面已经学习了带头双向循环链表&#xff0c;数据结构中还有一些特殊的线性表&#xff0c;如栈和队列&#xff0c;那么我们今天就来实现数组栈。 目录&#xff1a; 一、 栈的概念 二、 栈的实现 三、 代码测试 栈的概念&#xff1a; 栈的概念…...

AI大模型低成本快速定制秘诀:RAG和向量数据库

文章目录 1. 前言2. RAG和向量数据库3. 论坛日程4. 购票方式 1. 前言 当今人工智能领域&#xff0c;最受关注的毋庸置疑是大模型。然而&#xff0c;高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。 这种背景下&#xff0c;向量数据库凭借其独特…...

Please No More Sigma(构造矩阵)

Please No More Sigma 给f(n)定义如下&#xff1a; f(n)1 n1,2; f(n)f(n-1)f(n-2) n>2; 给定n&#xff0c;求下式模1e97后的值 Input 第一行一个数字T&#xff0c;表示样例数 以下有T行&#xff0c;每行一个数&#xff0c;表示n。 保证T<100&#xff0c;n<100000…...

HTML设置标签栏的图标

添加此图标最简单的方法无需修改内容&#xff0c;只需按以下步骤操作即可&#xff1a; 1.准备一个 ico 格式的图标 2.将该图标命名为 favicon.ico 3.将图标文件置于index.html同级目录即可 为什么我的没有变化&#xff1f; 答曰&#xff1a;ShiftF5强制刷新一下网页就行了...

4.CentOS7安装MySQL5.7

CentOS7安装MySQL5.7 2023-11-13 小柴你能看到嘛 哔哩哔哩视频地址 https://www.bilibili.com/video/BV1jz4y1A7LS/?vd_source9ba3044ce322000939a31117d762b441 一.解压 tar -xvf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz1.在/usr/local解压 tar -xvf mysql-5.7.44-…...

【华为OD题库-014】告警抑制-Java

题目 告警抑制&#xff0c;是指高优先级告警抑制低优先级告警的规则。高优先级告警产生后&#xff0c;低优先级告警不再产生。请根据原始告警列表和告警抑制关系&#xff0c;给出实际产生的告警列表。不会出现循环抑制的情况。告警不会传递&#xff0c;比如A->B.B->C&…...

高频SQL50题(基础题)-5

文章目录 主要内容一.SQL练习题1.602-好友申请&#xff1a;谁有最多的好友代码如下&#xff08;示例&#xff09;: 2.585-2016年的投资代码如下&#xff08;示例&#xff09;: 3.185-部门工资前三高的所有员工代码如下&#xff08;示例&#xff09;: 4.1667-修复表中的名字代码…...

Spring IoC DI 使⽤

关于 IoC 的含义&#xff0c;推荐看IoC含义介绍&#xff08;Spring的核心思想&#xff09; 喜欢 Java 的推荐点一个免费的关注&#xff0c;主页有更多 Java 内容 前言 通过上述的博客我们知道了 IoC 的含义&#xff0c;既然 Spring 是⼀个 IoC&#xff08;控制反转&#xff09…...

Zigbee智能家居方案设计

背景 目前智能家居物联网中最流行的三种通信协议&#xff0c;Zigbee、WiFi以及BLE&#xff08;蓝牙&#xff09;。这三种协议各有各的优势和劣势。本方案基于CC2530芯片来设计&#xff0c;CC2530是TI的Zigbee芯片。 网关使用了ESP8266CC2530。 硬件实物 节点板子上带有继电器…...

机器视觉目标检测 - opencv 深度学习 计算机竞赛

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…...

无监督学习的集成方法:相似性矩阵的聚类

在机器学习中&#xff0c;术语Ensemble指的是并行组合多个模型&#xff0c;这个想法是利用群体的智慧&#xff0c;在给出的最终答案上形成更好的共识。 这种类型的方法已经在监督学习领域得到了广泛的研究和应用&#xff0c;特别是在分类问题上&#xff0c;像RandomForest这样…...

16. 机器学习——决策树

机器学习面试题汇总与解析——决策树 本章讲解知识点 什么是决策树决策树原理决策树优缺点决策树的剪枝决策树的改进型本专栏适合于Python已经入门的学生或人士,有一定的编程基础。 本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。 本专栏针对面试题答案进行了…...

DevOps系列---【jenkinsfile使用sshpass发送到另一台服务器】

1.首先在宿主机安装sshpass 2.把物理机的sshpass复制到容器中 which sshpass cp $(which sshpass) /usr/local/app/ docker cp sshpass 容器id:/usr/local/bin/sshpass 3.在jenkinsfile中添加 #在stages中添加stage stage(部署TEST服务){steps{sh "sshpass -p root1234 sc…...

Docker 和 Kubernetes:技术相同和不同之处

Docker和Kubernetes是当今最流行的容器化技术解决方案。本文将探讨Docker和Kubernetes的技术相似之处和不同之处&#xff0c;以帮助读者更好地理解这两种技术。 Docker和Kubernetes&#xff1a;当今最流行的容器化技术解决方案 在当今的IT领域&#xff0c;Docker和Kubernetes无…...

通信世界扫盲基础二(原理部分)

上次我们刚学习了关于通信4/G的组成和一些通识&#xff0c;今天我们来更深层次了解一些原理以及一些新的基础~ 目录 专业名词 LTE(4G系统) EPC s1 E-UTRAN UE UU X2 eNodeB NR(5G系统) NGC/5GC NG NG-RAN Xn gNodeB N26接口 手机的两种状态 空闲态 连接态 …...

手机厂商参与“百模大战”,vivo发布蓝心大模型

在2023 vivo开发者大会上&#xff0c;vivo发布自研通用大模型矩阵——蓝心大模型&#xff0c;其中包含十亿、百亿、千亿三个参数量级的5款自研大模型&#xff0c;其中&#xff0c;10亿量级模型是主要面向端侧场景打造的专业文本大模型&#xff0c;具备本地化的文本总结、摘要等…...

【微软技术栈】C#.NET 中的泛型

本文内容 定义和使用泛型泛型的利与弊类库和语言支持嵌套类型和泛型 借助泛型&#xff0c;你可以根据要处理的精确数据类型定制方法、类、结构或接口。 例如&#xff0c;不使用允许键和值为任意类型的 Hashtable 类&#xff0c;而使用 Dictionary<TKey,TValue> 泛型类并…...

【毕业论文】基于微信小程序的植物分类实践教学系统的设计与实现

基于微信小程序的植物分类实践教学系统的设计与实现https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88519758 基于微信小程序的植物分类实践教学系统的设计与实现 Design and Implementation of Plant Classification Practical Teaching System based on WeChat Mini…...

[量化投资-学习笔记011]Python+TDengine从零开始搭建量化分析平台-MACD金死叉策略回测

在上一章节 MACD金死叉中结束了如何根据 MACD 金死叉计算交易信号。 目录 脚本说明文档&#xff08;DevChat 生成&#xff09;MACD 分析脚本安装依赖库参数配置查询与解析数据计算 MACD 指标判断金叉和死叉计算收益绘制图形运行脚本 本次将根据交易信号&#xff0c;模拟交易。更…...

tensorboard报错解决:No dashboards are active for the current data set

版本&#xff1a;tensorboard 2.10.0 问题&#xff1a;文件夹下明明有events文件&#xff0c;但用tensorboard命令却无法显示。 例如&#xff1a; 原因&#xff1a;有可能是文件路径太长了&#xff0c;导致系统无法读取文件。在win系统中规定&#xff0c;目录的绝对路径不得超…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...