当前位置: 首页 > news >正文

41. 缺失的第一个正数

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。

请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。

示例 1:

输入:nums = [1,2,0]
输出:3

示例 2:

输入:nums = [3,4,-1,1]
输出:2

示例 3:

输入:nums = [7,8,9,11,12]
输出:1

提示:

  • 1 <= nums.length <= 5 * 105
  • -231 <= nums[i] <= 231 - 1

 

 int firstMissingPositive(vector<int>& nums) {

        vector<int> vec(500000,0);

        for(int i=0;i<nums.size();i++)

        {

            if(nums[i]<=0 || nums[i] >=500000)

            {

                continue;

            }

            vec[nums[i]]=1;

        }

        for(int i=1;i<vec.size();i++)

        {

            if(vec[i]==0)

            {

                return i;

            }

        }

        return 1;

    }

相关文章:

41. 缺失的第一个正数

给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,0] 输出&#xff1a;3示例 2&#xff1a; 输入&#xff1a;nums [3…...

数据结构—数组栈的实现

前言&#xff1a;各位小伙伴们我们前面已经学习了带头双向循环链表&#xff0c;数据结构中还有一些特殊的线性表&#xff0c;如栈和队列&#xff0c;那么我们今天就来实现数组栈。 目录&#xff1a; 一、 栈的概念 二、 栈的实现 三、 代码测试 栈的概念&#xff1a; 栈的概念…...

AI大模型低成本快速定制秘诀:RAG和向量数据库

文章目录 1. 前言2. RAG和向量数据库3. 论坛日程4. 购票方式 1. 前言 当今人工智能领域&#xff0c;最受关注的毋庸置疑是大模型。然而&#xff0c;高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。 这种背景下&#xff0c;向量数据库凭借其独特…...

Please No More Sigma(构造矩阵)

Please No More Sigma 给f(n)定义如下&#xff1a; f(n)1 n1,2; f(n)f(n-1)f(n-2) n>2; 给定n&#xff0c;求下式模1e97后的值 Input 第一行一个数字T&#xff0c;表示样例数 以下有T行&#xff0c;每行一个数&#xff0c;表示n。 保证T<100&#xff0c;n<100000…...

HTML设置标签栏的图标

添加此图标最简单的方法无需修改内容&#xff0c;只需按以下步骤操作即可&#xff1a; 1.准备一个 ico 格式的图标 2.将该图标命名为 favicon.ico 3.将图标文件置于index.html同级目录即可 为什么我的没有变化&#xff1f; 答曰&#xff1a;ShiftF5强制刷新一下网页就行了...

4.CentOS7安装MySQL5.7

CentOS7安装MySQL5.7 2023-11-13 小柴你能看到嘛 哔哩哔哩视频地址 https://www.bilibili.com/video/BV1jz4y1A7LS/?vd_source9ba3044ce322000939a31117d762b441 一.解压 tar -xvf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz1.在/usr/local解压 tar -xvf mysql-5.7.44-…...

【华为OD题库-014】告警抑制-Java

题目 告警抑制&#xff0c;是指高优先级告警抑制低优先级告警的规则。高优先级告警产生后&#xff0c;低优先级告警不再产生。请根据原始告警列表和告警抑制关系&#xff0c;给出实际产生的告警列表。不会出现循环抑制的情况。告警不会传递&#xff0c;比如A->B.B->C&…...

高频SQL50题(基础题)-5

文章目录 主要内容一.SQL练习题1.602-好友申请&#xff1a;谁有最多的好友代码如下&#xff08;示例&#xff09;: 2.585-2016年的投资代码如下&#xff08;示例&#xff09;: 3.185-部门工资前三高的所有员工代码如下&#xff08;示例&#xff09;: 4.1667-修复表中的名字代码…...

Spring IoC DI 使⽤

关于 IoC 的含义&#xff0c;推荐看IoC含义介绍&#xff08;Spring的核心思想&#xff09; 喜欢 Java 的推荐点一个免费的关注&#xff0c;主页有更多 Java 内容 前言 通过上述的博客我们知道了 IoC 的含义&#xff0c;既然 Spring 是⼀个 IoC&#xff08;控制反转&#xff09…...

Zigbee智能家居方案设计

背景 目前智能家居物联网中最流行的三种通信协议&#xff0c;Zigbee、WiFi以及BLE&#xff08;蓝牙&#xff09;。这三种协议各有各的优势和劣势。本方案基于CC2530芯片来设计&#xff0c;CC2530是TI的Zigbee芯片。 网关使用了ESP8266CC2530。 硬件实物 节点板子上带有继电器…...

机器视觉目标检测 - opencv 深度学习 计算机竞赛

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…...

无监督学习的集成方法:相似性矩阵的聚类

在机器学习中&#xff0c;术语Ensemble指的是并行组合多个模型&#xff0c;这个想法是利用群体的智慧&#xff0c;在给出的最终答案上形成更好的共识。 这种类型的方法已经在监督学习领域得到了广泛的研究和应用&#xff0c;特别是在分类问题上&#xff0c;像RandomForest这样…...

16. 机器学习——决策树

机器学习面试题汇总与解析——决策树 本章讲解知识点 什么是决策树决策树原理决策树优缺点决策树的剪枝决策树的改进型本专栏适合于Python已经入门的学生或人士,有一定的编程基础。 本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。 本专栏针对面试题答案进行了…...

DevOps系列---【jenkinsfile使用sshpass发送到另一台服务器】

1.首先在宿主机安装sshpass 2.把物理机的sshpass复制到容器中 which sshpass cp $(which sshpass) /usr/local/app/ docker cp sshpass 容器id:/usr/local/bin/sshpass 3.在jenkinsfile中添加 #在stages中添加stage stage(部署TEST服务){steps{sh "sshpass -p root1234 sc…...

Docker 和 Kubernetes:技术相同和不同之处

Docker和Kubernetes是当今最流行的容器化技术解决方案。本文将探讨Docker和Kubernetes的技术相似之处和不同之处&#xff0c;以帮助读者更好地理解这两种技术。 Docker和Kubernetes&#xff1a;当今最流行的容器化技术解决方案 在当今的IT领域&#xff0c;Docker和Kubernetes无…...

通信世界扫盲基础二(原理部分)

上次我们刚学习了关于通信4/G的组成和一些通识&#xff0c;今天我们来更深层次了解一些原理以及一些新的基础~ 目录 专业名词 LTE(4G系统) EPC s1 E-UTRAN UE UU X2 eNodeB NR(5G系统) NGC/5GC NG NG-RAN Xn gNodeB N26接口 手机的两种状态 空闲态 连接态 …...

手机厂商参与“百模大战”,vivo发布蓝心大模型

在2023 vivo开发者大会上&#xff0c;vivo发布自研通用大模型矩阵——蓝心大模型&#xff0c;其中包含十亿、百亿、千亿三个参数量级的5款自研大模型&#xff0c;其中&#xff0c;10亿量级模型是主要面向端侧场景打造的专业文本大模型&#xff0c;具备本地化的文本总结、摘要等…...

【微软技术栈】C#.NET 中的泛型

本文内容 定义和使用泛型泛型的利与弊类库和语言支持嵌套类型和泛型 借助泛型&#xff0c;你可以根据要处理的精确数据类型定制方法、类、结构或接口。 例如&#xff0c;不使用允许键和值为任意类型的 Hashtable 类&#xff0c;而使用 Dictionary<TKey,TValue> 泛型类并…...

【毕业论文】基于微信小程序的植物分类实践教学系统的设计与实现

基于微信小程序的植物分类实践教学系统的设计与实现https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88519758 基于微信小程序的植物分类实践教学系统的设计与实现 Design and Implementation of Plant Classification Practical Teaching System based on WeChat Mini…...

[量化投资-学习笔记011]Python+TDengine从零开始搭建量化分析平台-MACD金死叉策略回测

在上一章节 MACD金死叉中结束了如何根据 MACD 金死叉计算交易信号。 目录 脚本说明文档&#xff08;DevChat 生成&#xff09;MACD 分析脚本安装依赖库参数配置查询与解析数据计算 MACD 指标判断金叉和死叉计算收益绘制图形运行脚本 本次将根据交易信号&#xff0c;模拟交易。更…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...