当前位置: 首页 > news >正文

【数据仓库】数仓分层方法详解与层次调用规范

文章目录

  • 一. 数仓分层的意义
    • 1. 清晰数据结构。
    • 2. 减少重复开发
    • 3. 方便数据血缘追踪
    • 4. 把复杂问题简单化
    • 5. 屏蔽原始数据的异常
    • 6. 数据仓库的可维护性
  • 二. 如何进行数仓分层?
    • 1. ODS层
    • 2. DW层
      • 2.1. DW层分类
      • 2.2. DWD层
      • 2.3. DWS
    • 3. ADS层
  • 4、层次调用规范

一. 数仓分层的意义

1. 清晰数据结构。

每一个数据分层都有它的作用域,这样我们能根据自己的需求会快定位到要使用那些层的哪些表。

例如:客户信息同时存在于核心系统、信贷系统、理财系统、资金系统,取数时该如何决策呢?数据仓库会对相同主题的数据进行统一建模,把复杂的数据关系梳理成条理清晰的数据模型,使用时就可避免上述问题了。

 

2. 减少重复开发

规范数据分层,开发一些通用的中间层数据,能够减少数据的重复计算。

数据的逐层加工原则,下层包含了上层数据加工所需要的全量数据,这样的加工方式避免了每个数据开发人员**都重新从源系统抽取数据进行加工。**极大地减少不必要的数据冗余,也能实现计算结果复用,极大地降低存储和计算成本。

 

3. 方便数据血缘追踪

简单来说,最终给业务呈现的是一个能直接使用的业务表,但是它的数据来源有很多,如果有一张来源表出问题了,分层后的数仓能够快速准确地定位到问题,并清楚它的危害范围。
 

4. 把复杂问题简单化

将一个复杂的任务分解成多个步骤来完成,每一层只处理单一的步骤,比较简单和容易理解。而且便于维护数据的准确性,当数据出现问题之后,可以不用修复所有的数据,只需要从有问题的步骤开始修复。

 

5. 屏蔽原始数据的异常

源头系统可能极为繁杂,而且表命名、字段命名 、字段含义等可能五花八门,通过 DW 层来规范和屏蔽所有这些复杂性。如果源头系统业务发生变更,相关的变更由 DW 层来处理,对下游用户透明,无须改动下游用户的代码和逻辑。

 

6. 数据仓库的可维护性

分层的设计使得某一层的问题只在该层得到解决,无须更改下一层的代码和逻辑。

 

二. 如何进行数仓分层?

数据分层最基础的分层思想将数据分为三个层:数据引入层(ODS)、数据仓库层(DW)和数据服务层(ADS)。可以基于基础分层之上添加新的层次,来满足不同的业务需求。
在这里插入图片描述

在这里插入图片描述

1. ODS层

数据引入层(ODS,Operational Data Store,又称数据基础层),是最接近数据源中数据的一层,这将原始数据几乎无处理地存放在数据仓库系统中,结构上与源系统基本保持一致

这一层的主要职责是解决数据孤岛问题,保证数据集成完整性;数据与源系统表一致,体现非易失性;定期同步,增加表同步时间戳,体现时变性。

 
ODS层数据的来源方式:

  • 业务库

离线:hive、flink批模式、sqoop定时调度。
实时:在实时方面, 可以考虑用canal监听mysql的binlog,实时接入即可。

  • 埋点日志

  • 线上系统会打入各种日志,这些日志一般以文件的形式保存,

离线:用flume定时抽取。
实时:用spark streaming或者Flink来实时接入存放到kafka中。

  • 消息队列:来自ActiveMQ、Kafka的数据等。

 

2. DW层

数仓层(DW, data warehouse)是核心设计的一层,本层将从 ODS 层中获得的数据按照主题建立各种数据模型,每一个主题对应一个宏观的分析领域,数据仓库层排除对决策无用的数据,提供特定主题的简明视图。在DW层会保存BI系统中所有的历史数据,例如保存10年的数据。

DW存放明细事实数据、维表数据及公共指标汇总数据。

  1. 明细事实数据、维表数据一般根据ODS层数据加工生成。
  2. 公共指标汇总数据一般根据维表数据和明细事实数据加工生成。

 

2.1. DW层分类

DW层又可以细分为维度层(DIM)、明细数据层(DWD)和汇总数据层(DWS)

分层作用:

  • 通过维度模型方法,可以定义维度模型主键与事实模型中外键关系,减少数据冗余,也提高明细数据表的易用性
  • 在汇总数据层同样可以关联复用统计粒度中的维度,采取更多的宽表化手段构建公共指标数据层,提升公共指标的复用性,减少重复加工

分类:

  • 维度层(DIM,Dimension):以维度作为建模驱动,创建各维度表。为了避免在维度模型中冗余关联维度的属性,基于雪花模型构建维度表。
  • 明细数据层(DWD,Data Warehouse Detail):以业务过程作为建模驱动,构建最细粒度的明细事实表。
  • 汇总数据层(DWS,Data Warehouse Summary):以分析的主题对象作为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标表。为上层提供公共指标,建立汇总宽表、明细事实表

 

2.2. DWD层

DWD层做了哪些事?

1.数据清洗过滤

去除废弃字段,去除格式错误的信息
去除丢失了关键字段的信息
过滤核心字段无意义的数据,比如订单表中订单id为null,支付表中支付id为空
对手机号、身份证号等敏感数据脱敏

2.数据映射,转换

如boolean,有使用0 1标识,也有使用true false标识的
如字符串空值,有使用"",也有使用null,的,统一为null即可
如日期格式,这种就差异性更大,需要根据实际业务数据决定,不过一般都是格式化为YYYY-MM-dd HH:mm:ss 这类标准格式

 

2.3. DWS

DWS( data warehouse service)数据服务层,汇总层宽表

DWS是根据DWD层基础数据按各个维度ID进行粗粒度汇总聚合,如按交易来源,交易类型进行汇合。整合汇总成分析某一个主题域的服务数据,一般是宽表。

该层数据表会相对比较少,大多都是宽表(一张表会涵盖比较多的业务内容,表中的字段较多)。按照主题划分,如订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

比如用户每个时间段在不同登录ip购买的商品数等。这里做一层轻度的汇总会让计算更加的高效,在此基础上如果计算7天、30天、90天的行为会快很多。80%的业务都能通过DWS层计算,而不是ODS。

 

公共汇总事实表命名规范:

dws_{业务板块缩写/pub}_{数据域缩写}_{数据粒度缩写}[_{自定义表命名标签缩写}]_{统计时间周期范围缩写}
关于统计实际周期范围缩写,缺省情况下,离线计算应该包括最近一天(_1d),最近N天(_nd)和历史截至当天(_td)三个表。如果出现_nd的表字段过多需要拆分时,只允许以一个统计周期单元作为原子拆分。即一个统计周期拆分一个表,例如最近7天(_1w)拆分一个表。不允许拆分出来的一个表存储多个统计周期。

对于小时表(无论是天刷新还是小时刷新),都用_hh来表示。对于分钟表(无论是天刷新还是小时刷新),都用_mm来表示。

举例如下:

dws_asale_trd_byr_subpay_1d(买家粒度交易分阶段付款一日汇总事实表)

dws_asale_trd_byr_subpay_td(买家粒度分阶段付款截至当日汇总表)

dws_asale_trd_byr_cod_nd(买家粒度货到付款交易汇总事实表)

dws_asale_itm_slr_td(卖家粒度商品截至当日存量汇总表)

dws_asale_itm_slr_hh(卖家粒度商品小时汇总表)—维度为小时

dws_asale_itm_slr_mm(卖家粒度商品分钟汇总表)—维度为分钟

 

3. ADS层

数据应用层(ADS,Application Data Store)存放着数据产品个性化的统计指标数据,报表数据

应用层主要是各个业务方或者部门基于DWD和DWS建立的数据集市(Data Market, DM),一般来说应用层的数据来源于DW层,而且相对于DW层,应用层只包含部门或者业务方面自己关心的明细层和汇总层的数据

APP 层:为应用层,这层数据是完全为了满足具体的分析需求而构建的数据,也是星形或雪花结构的数据。如我们经常说的报表数据,或者说那种大宽表,一般就放在这里。包括前端报表、分析图表、KPI、仪表盘、OLAP、专题等分析,面向最终结果用户。

应用层是根据业务需要,由前面三层数据统计而出的结果,可以直接提供查询展现,或导入至Mysql中使用。

 
 

4、层次调用规范

  • 禁止反向调用

  • ODS 只能被 DWD 调用。

  • DWD 可以被 DWS 和 ADS 调用。

  • DWS 只能被 ADS 调用。

  • 数据应用可以调用 DWD、DWS、ADS,但建议优先考虑使用汇总度高的数据
    ODS->DWD->DWS>ADS
    ODS->DWD->ADS

 
参考:
https://dbaplus.cn/news-73-4907-1.html

相关文章:

【数据仓库】数仓分层方法详解与层次调用规范

文章目录 一. 数仓分层的意义1. 清晰数据结构。2. 减少重复开发3. 方便数据血缘追踪4. 把复杂问题简单化5. 屏蔽原始数据的异常6. 数据仓库的可维护性 二. 如何进行数仓分层?1. ODS层2. DW层2.1. DW层分类2.2. DWD层2.3. DWS 3. ADS层 4、层次调用规范 一. 数仓分层…...

记一次线上问题引发的对 Mysql 锁机制分析

背景 最近双十一开门红期间组内出现了一次因 Mysql 死锁导致的线上问题,当时从监控可以看到数据库活跃连接数飙升,导致应用层数据库连接池被打满,后续所有请求都因获取不到连接而失败 整体业务代码精简逻辑如下: Transaction p…...

Android 工厂模式距离传感器逻辑优化

Android 工厂模式距离传感器逻辑优化 接到客户反馈提到距离传感器校准完毕之后,每次测试完成界面都会弹出“请点击校准按钮进行校准!”Toast弹窗,需要对弹窗的显示逻辑进行优化,即只让其在首次进入距离传感器测试界面时弹出&#…...

Dell笔记本电脑 启动时提示解决

https://www.dell.com/support/kbdoc/en-us/000139731/what-the-headless-operation-mode-active-post-message-means-and-how-to-stop-it-appearing-during-start-up dell官方解释: 提示来自于BIOS/UEFI固件中POST Behaviar,只要打开了忽略警告、错误…...

【人工智能Ⅰ】7-KNN 决策树

【人工智能Ⅰ】7-KNN & 决策树 7-1 KNN(K near neighbour) 思想:一个样本与数据集中的k个样本最相似,若这k个样本大多数属于某类别,则该个样本也属于这类别 距离度量 样本相似性用欧氏距离定义 L p ( x i , x…...

【LeetCode】26. 删除有序数组中的重复项

26. 删除有序数组中的重复项 难度:简单 题目 给你一个 非严格递增排列 的数组 nums ,请你原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素…...

K8S知识点(八)

(1)实战入门-Label 通过标签实现Pod的区分,说白了就是一种标签选择机制 可以使用命令是否加了标签: 打标签: 更新标签: 筛选标签: 修改配置文件,重新创建一个pod 筛选&#xff1…...

25.4 MySQL 函数

1. 函数的介绍 1.1 函数简介 在编程中, 函数是一种组织代码的方式, 用于执行特定任务. 它是一段可以被重复使用的代码块, 通常接受一些输入(参数)然后返回一个输出. 函数可以帮助开发者将大型程序分解为更小的, 更易于管理的部分, 提高代码的可读性和可维护性.函数在编程语言…...

Unity 下载Zip压缩文件并且解压缩

1、Unity下载Zip压缩文件主要使用UnityWebRequest类。 可以参考以下方法: webRequest UnityWebRequest.Get(Path1); //压缩文件路径webRequest.timeout 60;webRequest.downloadHandler new DownloadHandlerBuffer();long fileSize GetLocalFileSize(Path2); …...

c++11新特性篇-委托构造函数和继承构造函数

C11引入了委托构造函数(Delegating Constructor)和C11及后续标准引入了继承构造函数(Inheriting Constructor)两个特性。 1.委托构造函数 委托构造函数是C11引入的一个特性,它允许一个构造函数调用同一类的另一个构造…...

Flink SQL处理回撤流(Retract Stream)案例

Flink SQL支持处理回撤流(Retract Stream),下面是一个使用Flink SQL消费回撤流的案例: 假设有一个数据流,包含用户的姓名和年龄,希望计算每个姓名的年龄总和。 以下是示例代码: // 创建流执行…...

6.5.事件图层(MapEventsOverlay)

愿你出走半生,归来仍是少年! 简单来说就是一个不参与绘制但是可进行交互的图层,它具备了单击和长按的交互功能。 booleanonSingleTapConfirmed(MotionEvent e, MapView mapView)booleanonLongPress(MotionEvent e, MapView mapView) 通过继承它重写上方…...

供暖系统如何实现数据远程采集?贝锐蒲公英高效实现智慧运维

山西某企业专注于暖通领域,坚持为城市集中供热行业和楼宇中央空调行业提供全面、专业的“智慧冷暖”解决方案。基于我国供热行业的管理现状,企业成功研发并推出了可将能源供应、管理与信息化、自动化相融合的ICS-DH供热节能管理系统。 但是,由…...

Flutter笔记:关于Flutter中的大文件上传(上)

Flutter笔记 关于Flutter中的大文件上传(上) 大文件上传背景与 Flutter 端实现文件分片传输 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址&#…...

腾讯云CVM服务器5年可选2核4G和4核8G配置

腾讯云服务器网整理五年云服务器优惠活动 txyfwq.com/go/txy 配置可选2核4G和4核8G,公网带宽可选1M、3M或5M,系统盘为50G高性能云硬盘,标准型S5实例CPU采用主频2.5GHz的Intel Xeon Cascade Lake或者Intel Xeon Cooper Lake处理器,…...

数据结构:反射

基本概念 反射中的四个类 Class类 Java文件在被编译之后,生成了.class文件,JVM此时解读.class文件,将其解析为java.lang.Class 对象,在程序运行时每个java文件就最终变成了Class类对象的一个实例。通过反射机制应用这个 实例就…...

45 深度学习(九):transformer

文章目录 transformer原理代码的基础准备位置编码Encoder blockmulti-head attentionFeed Forward自定义encoder block Deconder blockEncoderDecodertransformer自定义loss 和 学习率mask生成函数训练翻译 transformer 这边讲一下这几年如日中天的新的seq2seq模式的transform…...

java中用javax.servlet.ServletInputStream.readLine有什么安全问题吗?怎么解决实例?

使用 javax.servlet.ServletInputStream.readLine 方法在处理 Servlet 请求时可能存在以下安全问题,以及相应的解决方案: 缓冲区溢出:readLine 方法会将数据读取到一个缓冲区中,并根据换行符分隔成行。如果输入流中包含过长的行或…...

面试官问 Spring AOP 中两种代理模式的区别?很多面试者被问懵了

面试官问 Spring AOP 中两种代理模式的区别?很多初学者栽了跟头,快来一起学习吧! 代理模式是一种结构性设计模式。为对象提供一个替身,以控制对这个对象的访问。即通过代理对象访问目标对象,并允许在将请求提交给对象前后进行一…...

MQ四大消费问题一锅端:消息不丢失 + 消息积压 + 重复消费 + 消费顺序性

RabbitMQ-如何保证消息不丢失 生产者把消息发送到 RabbitMQ Server 的过程中丢失 从生产者发送消息的角度来说,RabbitMQ 提供了一个 Confirm(消息确认)机制,生产者发送消息到 Server 端以后,如果消息处理成功&#xff…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...