当前位置: 首页 > news >正文

计算机视觉:人脸识别与检测

目录

前言

识别检测方法

本文方法

项目解析

完整代码及效果展示


前言

人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图像中去除干扰,提取人脸信息,获取人脸图像位置,检测的成功率主要受图像质量,光线强弱和遮挡等因素影响。下图是整个人脸检测过程。
 

识别检测方法

  1. 传统识别方法
    (1)基于点云数据的人脸识别
    (2)基于面部特征的3D人脸识别

  2. 深度学习识别方法
    (1)基于深度图的人脸识别
    (2)基于RGB-3DMM的人脸识别
    (3)基于RGB-D的人脸识别

本文方法

关键点定位概述
一般人脸中有5个关键点,其中包括眼睛两个,鼻子一个,嘴角两个。还可以细致的分为68个关键点,这样的话会概括的比较全面,我们本次研究就是68个关键点定位。

上图就是我们定位人脸的68个关键点,其中他的顺序是要严格的进行排序的。从1到68点的顺序不能错误。

项目解析

使用机器学习框架dlib做本次的项目。首先我们要指定参数时,要把dlib中的68关键点人脸定位找到。设置出来的68关键点人脸定位找到。并且设置出来。

from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2

首先我们导入工具包。其中dlib库是通过这个网址http://dlib.net/files/进行下载的。然后我们导入参数。

ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,help="path to input image")
args = vars(ap.parse_args())

这里我们要设置参数,
--shape-predictor shape_predictor_68_face_landmarks.dat --image images/lanqiudui.jpg。如果一张图像里面有多个人脸,那么我们分不同部分进行检测,裁剪出来所对应的ROI区域。我们的整体思路就是先检测人脸所在的一个区域位置,然后检测鼻子相对于人脸框所在的一个位置,比如说人的左眼睛在0.2w,0.2h的人脸框处。
 

FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])

这个是68个关键点定位的各个部位相对于人脸框的所在位置。分别对应着嘴,左眼、右眼、左眼眉、右眼眉、鼻子、下巴。

FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))
])

如果是5点定位,那么就需要定位左眼、右眼、鼻子。0、1、2、3、4分别表示对应的5个点。

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])

加载人脸检测与关键点定位。加载出来。其中detector默认的人脸检测器。然后通过传入参数返回人脸检测矩形框4点坐标。其中predictor以图像的某块区域为输入,输出一系列的点(point location)以表示此图像region里object的姿势pose。返回训练好的人脸68特征点检测器。
 

image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
width=500
r = width / float(w)
dim = (width, int(h * r))
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

这里我们把数据读了进来,然后进行需处理,提取h和w,其中我们自己设定图像的w为500,然后按照比例同比例设置h。然后进行了resize操作,最后转化为灰度图。

rects = detector(gray, 1)

这里调用了detector的人脸框检测器,要使用灰度图进行检测,这个1是重采样个数。这里面返回的是人脸检测矩形框4点坐标。然后对检测框进行遍历

for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)

这里面返回68个关键点定位。shape_to_np这个函数如下。

def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coords

这里shape_to_np函数的作用就是得到关键点定位的坐标。

for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy()cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2) # 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)

这里字典FACIAL_LANDMARKS_68_IDXS.items()是同时提取字典中的key和value数值。然后遍历出来这几个区域,并且进行显示具体是那个区域,并且将这个区域画圆。随后提取roi区域并且进行显示。后面部分就是同比例显示w和h。然后展示出来。

	output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

最后展示所有区域。
其中visualize_facial_landmarks函数就是:

def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output

这个函数是计算cv2.convexHull凸包的,也就是下图这个意思。

这个函数cv2.addWeighted是做图像叠加的。

src1, src2:需要融合叠加的两副图像,要求大小和通道数相等
alpha:src1 的权重
beta:src2 的权重
gamma:gamma 修正系数,不需要修正设置为 0
dst:可选参数,输出结果保存的变量,默认值为 None
dtype:可选参数,输出图像数组的深度,即图像单个像素值的位数(如 RGB 用三个字节表示,则为 24 位),选默认值 None 表示与源图像保持一致。

dst = src1 × alpha + src2 × beta + gamma;上面的式子理解为,结果图像 = 图像 1× 系数 1+图像 2× 系数 2+亮度调节量。

完整代码及效果展示

from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,help="path to input image")
args = vars(ap.parse_args())FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))
])def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coordsdef visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output# 加载人脸检测与关键点定位
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])# 读取输入数据,预处理
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
width=500
r = width / float(w)
dim = (width, int(h * r))
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 人脸检测
rects = detector(gray, 1)# 遍历检测到的框
for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)# 遍历每一个部分for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy()cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2) # 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)# 展示所有区域output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

最终将7个人的人脸都依次的检测到了。并且根据关键点定位到了。

如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

相关文章:

计算机视觉:人脸识别与检测

目录 前言 识别检测方法 本文方法 项目解析 完整代码及效果展示 前言 人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别。人脸检测是从获取的图…...

【NLP】理解 Llama2:KV 缓存、分组查询注意力、旋转嵌入等

LLaMA 2.0是 Meta AI 的开创性作品,作为首批高性能开源预训练语言模型之一闯入了 AI 场景。值得注意的是,LLaMA-13B 的性能优于巨大的 GPT-3(175B),尽管其尺寸只是其一小部分。您无疑听说过 LLaMA 令人印象深刻的性能,但您是否想知…...

ctyunos 与 openeuler

ctyunos-2.0.1-220311-aarch64-dvd ctyunos-2.0.1-220329-everything-aarch64-dvd glibc python3 对应openEuler 20.03 LTS SP1...

跟着GPT学设计模式之工厂模式

工厂模式(Factory Design Pattern)分为三种更加细分的类型:简单工厂、工厂方法和抽象工厂。在这三种细分的工厂模式中,简单工厂、工厂方法原理比较简单,在实际的项目中也比较常用。而抽象工厂的原理稍微复杂点&#xf…...

VScode+python开发,多个解释器切换问题

内容:主要VScode使用多个解释器 环境准备 VScode编辑器,两个版本python解释器 python3.7.2 python3.11.6 问题: 目前我们的电脑安装了python3.7.2、python3.11.6两个解释器,在vscode编辑器中,无法切换解释器使用如…...

c++ 经典服务器开源项目Tinywebserver如何运行

第一次直接按作者的指示,运行sh ./build.sh,再运行./server,发现不起作用,localhost:9006也是拒绝访问的状态,后来摸索成功了发现,运行./server之后,应该是启动状态,就是不会退出,而…...

c++之xml的创建,增删改查

c之xml的创建&#xff0c;增删改查 1.创建写入2.添加3.删除4.修改&#xff1a; 1.创建写入 #include <stdio.h> #include <typeinfo> #include "F:/EDGE/tinyxml/tinyxml.h" #include <iostream> #include <string> #include <Winsock2.…...

【前端开发】JS Vue React中的通用递归函数

目录 前言 一、递归函数的由来 二、功能实现 1.后台数据 2.处理数据 3.整体代码 总结 &#x1f642;博主&#xff1a;冰海恋雨. &#x1f642;文章核心&#xff1a;【前端开发】JS Vue React中的通用递归函数 前言 大家好&#xff0c;今天和大家分享一下在前端开发中j…...

【python 生成器 面试必备】yield关键字,协程必知必会系列文章--自己控制程序调度,体验做上帝的感觉 1

python生成器系列文章目录 第一章 yield — Python (Part I) 文章目录 python生成器系列文章目录前言1. Generator Function 生成器函数2.并发和并行&#xff0c;抢占式和协作式2.Let’s implement Producer/Consumer pattern using subroutine: 生成器的状态 generator’s st…...

头哥实践平台之MapReduce基础实战

一. 第1关&#xff1a;成绩统计 编程要求 使用MapReduce计算班级每个学生的最好成绩&#xff0c;输入文件路径为/user/test/input&#xff0c;请将计算后的结果输出到/user/test/output/目录下。 先写命令行,如下: 一行就是一个命令 touch file01 echo Hello World Bye Wor…...

Linux基础知识——tmux和vim

Linux基础知识——tmux和vim 文章目录 Linux基础知识——tmux和vim一、tmux1. 功能2. 结构3. 操作 二、vim功能模式操作 一、tmux tmux配置&#xff1a;~/.tmux.conf修改为如下 set-option -g status-keys vi setw -g mode-keys visetw -g monitor-activity on# setw -g c0-cha…...

Java Web——TomcatWeb服务器

目录 1. 服务器概述 1.1. 服务器硬件 1.2. 服务器软件 2. Web服务器 2.1. Tomcat服务器 2.2. 简单的Web服务器使用 1. 服务器概述 服务器指的是网络环境下为客户机提供某种服务的专用计算机&#xff0c;服务器安装有网络操作系统和各种服务器的应用系统服务器的具有高速…...

Zookeeper 命令使用和数据说明

文章目录 一、概述二、命令使用2.1 登录 ZooKeeper2.2 ls 命令&#xff0c;查看目录树&#xff08;节点&#xff09;2.3 create 命令&#xff0c;创建节点2.4 delete 命令&#xff0c;删除节点2.5 set 命令&#xff0c;设置节点数据2.6 get 命令&#xff0c;获取节点数据 三、数…...

索尼RSV文件怎么恢复为MP4视频

索尼相机RSV是什么文件&#xff1f; 如果您的相机是索尼SONY A7S3&#xff0c;A7M4&#xff0c;FX3&#xff0c;FX3&#xff0c;FX6&#xff0c;或FX9等&#xff0c;有时录像会产生一个RSV文件&#xff0c;而没有MP4视频文件。RSV其实是MP4的前期文件&#xff0c;经我对RSV文件…...

pytorch-gpu(Anaconda3+cuda+cudnn)

文章目录 下载Anaconda3安装&#xff0c;看着点next就行比较懒所以自动添加path测试 cuda安装的时候不能改路径如果出现报错&#xff0c;关闭杀毒软件一直下一步就好取消勾选“CUDA”中的“Visual Studio Intergration”一直下一步即可测试安装成功 cudnn解压后将这三个文件夹复…...

解析数据洁净之道:BI中数据清理对见解的深远影响

本文由葡萄城技术团队发布。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 随着数字化和信息化进程的不断发展&#xff0c;数据已经成为企业的一项不可或缺的重要资源。然而&#xff0c;这…...

efcore反向共工程,单元测试

1.安装efcore需要的nuget <PackageReference Include"Microsoft.EntityFrameworkCore" Version"6.0.24" /> <PackageReference Include"Microsoft.EntityFrameworkCore.SqlServer" Version"6.0.24" /> <PackageRefere…...

利用IP风险画像强化金融行业网络安全防御

在数字化时代&#xff0c;金融行业日益依赖互联网和技术创新&#xff0c;但这也使得金融机构成为网络攻击的主要目标。为了应对日益复杂的网络威胁&#xff0c;金融机构迫切需要采用先进的安全技术和工具。其中&#xff0c;IP风险画像技术成为提升网络安全的一项重要策略。 1.…...

1334. 阈值距离内邻居最少的城市

分析题目两点“阈值距离”、“邻居最少”。 “阈值距离”相当于定了个上界&#xff0c;求节点之间的最短距离。 “邻居最少”相当于能连接的点的数量。 求节点之间的最短距离有以下几种方法&#xff1a; 在这道题当中&#xff0c;n的范围是100以内&#xff0c;所以可以考虑O(n…...

Live800:客服行业的发展历程及未来前景

随着信息技术和互联网的高速发展&#xff0c;客服行业也在不断变革和发展。客服行业是一个服务型的行业&#xff0c;其发展历程也与人们对服务需求的变化密切相关。本文将介绍客服行业的发展历程和未来前景。 客服行业的发展历程 20世纪70年代&#xff0c;客服行业主要以电话服…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...