当前位置: 首页 > news >正文

基于遗传算法的图像重建

        图像重建涉及从图像的有限信息中恢复出可能丢失或受损的信息。使用遗传算法进行图像重建的一般思路是调整某些参数或者操作,以使得图像的质量或者特定的性能指标最优化。

以下是一个简单的图像重建的遗传算法示例,以模拟重建一个被模糊的图像。

图像重建遗传算法示例:

问题定义:

        假设我们有一张被模糊的图像,我们的目标是通过调整图像的某些参数来进行重建。

个体表示:

        个体可以表示为一个包含图像重建参数的向量。例如,可以调整图像的模糊程度、噪声水平等参数。

适应度函数:

        适应度函数用于评估每个个体(图像重建方案)的质量。适应度函数可以考虑模糊度减小、对比度增强等因素。

初始化种群:

        随机生成一组个体,每个个体包含一个图像重建参数向量。

遗传算法操作和迭代优化:
  • 选择操作: 根据适应度函数的值选择个体。
  • 交叉操作: 通过交叉两个个体的参数生成新的个体。
  • 变异操作: 对个体的参数进行随机变异。
示例代码:
import numpy as np
import cv2
import matplotlib.pyplot as plt# 1. 问题定义
# 重建被模糊的图像# 2. 个体表示
# 个体表示为一个包含图像重建参数的字典
def generate_individual():return {'blur_kernel_size': int(np.random.choice(range(1, 12, 2))),'noise_level': np.random.uniform(0, 10)}# 3. 适应度函数
# 适应度函数用于评估图像重建方案的质量
def fitness(individual, blurred_image):ksize = (int(individual['blur_kernel_size']), int(individual['blur_kernel_size']))# 确保 ksize 是正奇数ksize = (max(ksize[0], 1), max(ksize[1], 1))# 将 ksize 调整为正奇数ksize = (ksize[0] + 1 if ksize[0] % 2 == 0 else ksize[0], ksize[1] + 1 if ksize[1] % 2 == 0 else ksize[1])reconstructed_image = cv2.GaussianBlur(blurred_image, ksize, 0)mse = np.mean((blurred_image - reconstructed_image) ** 2)return -mse  # 负均方误差,因为我们希望最大化适应度# 4. 初始化种群
population_size = 20
population = [generate_individual() for _ in range(population_size)]# 5. 遗传算法操作和迭代优化
generations = 50
blurred_image = cv2.imread('icon.png', cv2.IMREAD_GRAYSCALE)for generation in range(generations):# 计算适应度fitness_values = np.array([fitness(individual, blurred_image) for individual in population])# 选择操作normalized_fitness = (fitness_values - np.min(fitness_values)) / (np.max(fitness_values) - np.min(fitness_values))normalized_fitness /= np.sum(normalized_fitness)  # Normalize to ensure the sum is 1# Ensure normalized_fitness is not all zeros (avoids division by zero)if np.sum(normalized_fitness) == 0:normalized_fitness = np.ones_like(normalized_fitness) / len(normalized_fitness)# 选择操作selected_population_indices = np.random.choice(range(population_size), size=population_size, replace=True, p=normalized_fitness)selected_population = [population[i] for i in selected_population_indices]# 交叉操作offspring = []for i in range(population_size // 2):parent1, parent2 = np.random.choice(selected_population, size=2, replace=False)crossover_point = np.random.randint(1, len(parent1))child = {key: parent1[key] if np.random.rand() < 0.5 else parent2[key] for key in parent1.keys()}offspring.append(child)# 变异操作mutated_offspring = [{key: individual[key] + np.random.normal(scale=1) for key in individual.keys()} for individual in offspring]# 替代操作population = mutated_offspring# 输出最优解if population:best_individual_index = np.argmax(fitness_values)best_individual = population[best_individual_index]print(f"Generation {generation + 1}, Best Fitness: {fitness(best_individual, blurred_image)}")# 输出最终的最优解
if population:print("\nBest Solution:")print(best_individual)# 重建图像并显示reconstructed_image = cv2.GaussianBlur(blurred_image, (best_individual['blur_kernel_size'], best_individual['blur_kernel_size']), 0)plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1), plt.imshow(blurred_image, cmap='gray'), plt.title('Blurred Image')plt.subplot(1, 2, 2), plt.imshow(reconstructed_image, cmap='gray'), plt.title('Reconstructed Image')plt.show()
else:print("No valid solution found.")

这个简单的例子演示了如何使用遗传算法来调整图像的模糊参数,从而重建模糊的图像。在实际应用中,问题和适应度函数的定义将取决于具体的图像重建任务。

相关文章:

基于遗传算法的图像重建

图像重建涉及从图像的有限信息中恢复出可能丢失或受损的信息。使用遗传算法进行图像重建的一般思路是调整某些参数或者操作&#xff0c;以使得图像的质量或者特定的性能指标最优化。 以下是一个简单的图像重建的遗传算法示例&#xff0c;以模拟重建一个被模糊的图像。 图像重…...

【Redis】Redis-Key的使用

上一篇&#xff1a; redis-server和redis-cli https://blog.csdn.net/m0_67930426/article/details/134361885?spm1001.2014.3001.5501 官网 命令 |雷迪斯 (redis.io) 设置key set name xxxxx 查看key keys * 再设置一个key并且查看 这里查看了两个key&#xff08;name a…...

为忙碌的软件工程师精心准备的编码面试准备材料,超过 100,000 人受益!

这是一个针对技术面试准备的手册。它收集了大量的面试问题和答案&#xff0c;涵盖了算法、系统设计、前端等主题&#xff0c;并且还在不断更新和完善中。 这个项目是“Tech Interview Handbook”&#xff0c;解决了求职者在技术面试中遇到的各种难题&#xff0c;帮助他们更好地…...

SpringCloud Alibaba(上):注册中心-nacos、负载均衡-ribbon、远程调用-feign

Nacos 概念&#xff1a;Nacos是阿里巴巴推出的一款新开源项目&#xff0c;它是一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。Nacos致力于帮助用户发现、配置和管理微服务&#xff0c;它提供了一组简单易用的特性集&#xff0c;包括动态服务发现、服务配置…...

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于乌鸦优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…...

Jenkins中强制停止停不下来的job

# Script console 执行脚本 Jenkins 的提供了 script console 的功能&#xff0c;允许你写一些脚本&#xff0c;来调度 Jenkins 执行一些任务。 我们就可以利用 script console 来强制停止 job 执行。 首先进入 Jenkins 的 script console 页面&#xff1a; script console 路…...

北邮22级信通院数电:Verilog-FPGA(9)第九周实验(1)实现带同步复位功能、采用上升沿触发的D触发器

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.顶层模块的书写 二.两种验证方法 2.1使用…...

go中的rune类型

go语言中 &#xff0c;rune其实是一种int32的数据类型的别名。 // rune is an alias for int32 and is equivalent to int32 in all ways. It is // used, by convention, to distinguish character values from integer values. type rune int32rune通常用于处理字符串中的单…...

C51--PC通过串口(中断)点亮LED

B4中的&#xff1a;REN允许 / 禁止串行接收控制位 REN 1为允许串行接收状态。 接收数据必须开启。所以SCON&#xff1a;0101 0000 &#xff1b;即0x50 如何知道数据已经接收 RI位&#xff1a;当收到数据后 RI 1&#xff08;由硬件置一&#xff09; 硬件置一后必须用软件…...

使用pixy计算群体遗传学统计量

1 数据过滤 过滤参数&#xff1a;过滤掉次等位基因频率&#xff08;minor allele frequency&#xff0c;MAF&#xff09;低于0.05、哈达-温伯格平衡&#xff08;Hardy– Weinberg equilibrium&#xff0c;HWE&#xff09;对应的P值低于1e-10或杂合率&#xff08;heterozygosit…...

第十九章总结:Java绘图

19.1&#xff1a;Java绘图类 19.2&#xff1a;绘制图形 package nineteentn; import java.awt.*; import javax.swing.*; public class DrawCircle extends JFrame { private final int OVAL_WIDTH 80; // 圆形的宽 private final int OVAL_HEIGHT 80; // 圆形的高…...

Mybatis-Plus条件构造器QueryWrapper

Mybatis-Plus条件构造器QueryWrapper 1、条件构造器关系介绍 介绍 &#xff1a; 上图绿色框为抽象类 蓝色框为正常类&#xff0c;可创建对象 黄色箭头指向为父子类关系&#xff0c;箭头指向为父类 wapper介绍 &#xff1a; Wrapper &#xff1a; 条件构造抽象类&#xff0…...

python解析wirshark抓包数据

因为工作需要&#xff0c;需要分析wirshark的抓包数据。数据有的是在比特位中。不方便查找。而lua语言又不愿意去学&#xff0c;所以用python解析后&#xff0c;输出日志。帮助分析.1.tcp分析 from dpkt.tcp import TCP from scapy.all import * from datetime import datetim…...

一个用于操作Excel文件的.NET开源库

推荐一个高性能、跨平台的操作Excel文件的.NET开源库。 01 项目简介 ClosedXML是一个.NET第三方开源库&#xff0c;支持读取、操作和写入Excel 2007 (.xlsx&#xff0c; .xlsm)文件&#xff0c;是基于OpenXML封装的&#xff0c;让开发人员无需了解OpenXML API底层API&#xf…...

Web APIs——正则表达式使用

1、什么是正则表达式 正则表达式&#xff08;Regular Expression&#xff09;是用于匹配字符串中字符组合的模式。在JavaScript中&#xff0c;正则表达式也是对象 通常用来查找、替换那些符合正则表达式的文本&#xff0c;许多语言都支持正则表达式 1.1 正则表达式使用场景 例如…...

文件包含学习笔记总结

文件包含概述 ​ 程序开发人员通常会把可重复使用函数或语句写到单个文件中&#xff0c;形成“封装”。在使用某个功能的时候&#xff0c;直接调用此文件&#xff0c;无需再次编写&#xff0c;提高代码重用性&#xff0c;减少代码量。这种调用文件的过程通常称为包含。 ​ 程…...

<C++> 优先级队列

目录 前言 一、priority_queue的使用 1. 成员函数 2. 例题 二、仿函数 三、模拟实现 1. 迭代器区间构造函数 && AdjustDown 2. pop 3. push && AdjustUp 4. top 5. size 6. empty 四、完整实现 总结 前言 优先级队列以及前面的双端队列基本上已经脱离了队列定…...

systemverilog:interface中的modport用法

使用modport可以将interface中的信号分组并指定方向&#xff0c;方向是从modport连接的模块看过来的。简单示例如下&#xff1a; interface cnt_if (input bit clk);logic rstn;logic load_en;logic [3:0] load;logic [7:0] count;modport TEST (input clk, count,output rst…...

VR建筑仿真场景编辑软件有助于激发创作者的灵感和创造力

随着VR虚拟现实技术的不断发展和普及&#xff0c;VR虚拟场景编辑器逐渐成为了VR场景开发重要工具。它对于丰富和完善VR虚拟现实内容的创建和呈现具有重要的意义&#xff0c;为我们的工作和教学带来了许多变化和可能性。 首先&#xff0c;VR虚拟场景编辑器对于提升用户体验具有重…...

8.查询数据

一、单表查询 MySQL从数据表中查询数据的基本语为SELECT语。SELECT语的基本格式是: SELECT {* | <字段列名>} [ FROM <表 1>, <表 2>… [WHERE <表达式> [GROUP BY <group by definition> [HAVING <expression> [{<operator>…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...