当前位置: 首页 > news >正文

c++汉诺塔问题

汉诺塔问题是一个经典的递归问题。基本规则是,给定三个柱子和一些不同大小的盘子,开始时所有盘子按大小顺序堆叠在第一个柱子上,目的是将所有盘子移动到第三个柱子上,并且在移动过程中只能在柱子之间移动一个盘子,并且大盘子不能放在小盘子上面。

以下是一个C++程序示例,用于解决汉诺塔问题:

  1. #include <iostream>
  2. using namespace std;
  3. void hanoi(int n, char from, char inter, char to) {
  4.     if (n == 1) {
  5.         cout << "Move disk 1 from " << from << " to " << to << endl;
  6.     } else {
  7.         hanoi(n - 1, from, to, inter);
  8.         cout << "Move disk " << n << " from " << from << " to " << to << endl;
  9.         hanoi(n - 1, inter, from, to);
  10.     }
  11. }
  12. int main() {
  13.     int n;
  14.     cout << "Enter the number of disks: ";
  15.     cin >> n;
  16.     hanoi(n, 'A', 'B', 'C');
  17.     return 0;
  18. }

在此示例中,hanoi函数使用递归来解决问题。 main函数从用户获取盘子的数量,并调用hanoi函数以解决汉诺塔问题。

当调用hanoi函数时,它将盘子数量n和三个柱子的标识符作为参数传递。 如果n等于1,则函数将打印将盘子从第一个柱子移动到第三个柱子的消息。 否则,函数将递归地调用自身三次,分别将前n-1个盘子从第一个柱子移动到第二个柱子,将第n个盘子从第一个柱子移动到第三个柱子,然后将前n-1个盘子从第二个柱子移动到第三个柱子。

通过这种方式,每个盘子都将被移动到第三个柱子上,并且每个盘子的移动都将遵循汉诺塔问题的规则。

下面是一个示例输出,其中将3个盘子从柱子A移动到柱子C:

  1. Enter the number of disks: 3
  2. Move disk 1 from A to C
  3. Move disk 2 from A to B
  4. Move disk 1 from C to B
  5. Move disk 3 from A to C
  6. Move disk 1 from B to A
  7. Move disk 2 from B to C
  8. Move disk 1 from A to C

在这个例子中,每个盘子的移动都遵循汉诺塔问题的规则,并且所有盘子都被成功地从第一个柱子移动到第三个柱子。

相关文章:

c++汉诺塔问题

汉诺塔问题是一个经典的递归问题。基本规则是&#xff0c;给定三个柱子和一些不同大小的盘子&#xff0c;开始时所有盘子按大小顺序堆叠在第一个柱子上&#xff0c;目的是将所有盘子移动到第三个柱子上&#xff0c;并且在移动过程中只能在柱子之间移动一个盘子&#xff0c;并且…...

前端---CSS的样式汇总

文章目录 CSS的样式元素的属性设置字体设置文字的粗细设置文字的颜色文本对齐文本修饰文本缩进行高设置背景背景的颜色背景的图片图片的属性平铺位置大小 圆角矩形 元素的显示模式行内元素和块级元素的转化弹性布局水平方向排列方式&#xff1a;justify-content垂直方向排序方式…...

android适配鸿蒙系统开发

将一个Android应用迁移到鸿蒙系统需要进行细致的工作&#xff0c;因为两者之间存在一些根本性的差异&#xff0c;涉及到代码、架构、界面等多个方面的修改和适配。以下是迁移工作可能涉及的一些主要方面&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专…...

golang学习笔记——select 判断语句

判断语句 Go 语言提供了以下几种条件判断语句&#xff1a; 语句描述if 语句if 语句 由一个布尔表达式后紧跟一个或多个语句组成。if…else 语句if 语句 后可以使用可选的 else 语句, else 语句中的表达式在布尔表达式为 false 时执行。if 嵌套语句你可以在 if 或 else if 语句…...

FLMix: 联邦学习新范式——局部和全局的结合

文章链接&#xff1a;Federated Learning of a Mixture of Global and Local Models 发表期刊&#xff08;会议&#xff09;: ICLR 2021 Conference&#xff08;机器学习顶会&#xff09; 目录 1. 背景介绍2. 传统联邦学习3. FL新范式理论逻辑重要假设解的特性 本博客从优化函…...

为什么嵌入式没有35岁危机?

为什么嵌入式没有35岁危机? 在当今数字化时代&#xff0c;IT行业变化迅速&#xff0c;技术的更新迭代速度惊人。然而&#xff0c;有一个技术领域却能够在这个竞争激烈的行业中稳步前行&#xff0c;而且不受35岁危机所困扰&#xff0c;那就是嵌入式技术。 嵌入式技术是指将计算…...

PostgreSQL设置主键从1开始自增

和MySQL不同&#xff0c;在 PostgreSQL 中&#xff0c;设置主键从1开始自增并重新开始自增是通过序列&#xff08;sequence&#xff09;来实现的。以下是步骤&#xff1a; 步骤1&#xff1a;创建一个序列 CREATE SEQUENCE your_table_id_seqSTART 1INCREMENT 1MINVALUE 1MAXV…...

Vue数据绑定

在我们Vue当中有两种数据绑定的方法 1.单向绑定 2.双向绑定 让我为大家介绍一下吧&#xff01; 1、单向绑定(v-bind) 数据只能从data流向页面 举个例子&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"…...

js写轮播图,逐步完善

目录 1、自动轮播 2、点击更换 3、自动播放加左右箭头点击切换 4、完整版轮播图 1、自动轮播 用定时器setInterval()来写&#xff0c;可以实现自动播放 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><met…...

算法-链表-简单-相交、反转、回文、环形、合并

记录一下算法题的学习5 在写关于链表的题目之前&#xff0c;我们应该熟悉回忆一下链表的具体内容 什么是链表&#xff1a; 链表&#xff08;Linked list&#xff09;是一种常见的基础数据结构&#xff0c;是一种线性表&#xff0c;但是并不会按线性的顺序存储数据&#xff0c…...

【500强 Kubernetes 课程】第3章 运行docker容器

一 - 三 &#xff0c;docker基础操作见 第2章7节 四、docker部署web网站 1、安装 nginx &#xff08;适合场景&#xff1a;学习 - 略&#xff09; 2、docker 安装 nginx Stage 1 &#xff1a;docker hub 上 搜索 nginx 镜像 Stage 2&#xff1a;拉取官方镜像 Stage 3&…...

Python中表格插件Tabulate的用法

目录 一、引言 二、Tabulate插件安装与导入 三、Tabulate基本用法 1、创建表格&#xff1a; 2. 格式化表格&#xff1a; 3. 表格转置&#xff1a; 4、合并单元格&#xff1a; 5、指定每列的格式&#xff1a; 6、指定每行的格式&#xff1a; 7、使用自定义表格格式&am…...

缺陷分级(过程质量bug分级)

缺陷按照其影响的严重程度&#xff0c;从高到低分成5级&#xff0c;分别为致命&#xff08;Blocker&#xff09;、严重&#xff08;Critical&#xff09;、一般&#xff08;Major&#xff09;、轻微&#xff08;Minor&#xff09;以及建议&#xff08;Enhancement&#xff09;。…...

pycharm/vscode 配置black和isort

Pycharm blackd Pycharm中有插件可以实现后台服务运行black&#xff1a;BlackConnect 安装 在python中安装blackd 配置 Pycharm isort pycharm中&#xff0c;isort没有插件&#xff0c;暂使用外部工具实现&#xff0c;外部工具也可添加快捷键实现快捷对文件、文件夹进行fo…...

python列出本地文件路径

按照之前的设想&#xff0c;如果要罗列出本地文件的列表&#xff0c;那不是需要不断的判断文件夹里面的文件夹吗&#xff1f;或者需要使用递归函数本身&#xff0c;才能达到目的吧&#xff1f;没想到使用pop这个函数就可以了。pop是取出元素&#xff0c;那列表里就少了一个&…...

在JavaScript中检查一个数字是否是另一个数字的倍数

使用%模数运算符 为了检查一个数字是否是另一个数字的倍数&#xff0c;我们可以使用JavaScript中的% modulo运算符。 modulo% 操作符返回第一个数字在第二个数字上的余数&#xff0c;例如&#xff1a;10 % 2 0 &#xff0c;所以如果我们得到一个余数0 &#xff0c;那么给定的数…...

计算机网络五层协议的体系结构

计算机网络中两个端系统之间的通信太复杂&#xff0c;因此把需要问题分而治之&#xff0c;通过把一次通信过程中涉及的所有问题分层归类来进行研究和处理 体系结构是抽象的&#xff0c;实现是真正在运行的软件和硬件 1.实体、协议、服务和服务访问点 协议必须把所有不利条件和…...

MySQL 运算符二

逻辑运算符 逻辑运算符用来判断表达式的真假。如果表达式是真&#xff0c;结果返回 1。如果表达式是假&#xff0c;结果返回 0。 运算符号作用NOT 或 !逻辑非AND逻辑与OR逻辑或XOR逻辑异或 1、与 mysql> select 2 and 0; --------- | 2 and 0 | --------- | 0 | -…...

【SA8295P 源码分析】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析

【SA8295P 源码分析】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析 一、MAX9295A 芯片特性1.1 GPIO 引脚说明1.2 功能模块框图1.3 时序分析1.3.1 GMSL2 Lock Time:25 ms1.3.2 视频初始化延时:1.1ms + 17000 x t(PCLK)1.3.3 High-Speed Data Transmission in Bursts1.…...

问题汇总20231103

文章目录 前言问题汇总1.所有操作系统在CPU层面上是不是都为时间片轮转的形式处理程序&#xff1f;只是任务调度的调度算法不同&#xff1f;那多线程的本质也是时间片吗&#xff1f;只不过很小&#xff1f;2.Mcu和mpu的本质区别3.下载HAL库步骤4.RAM,ROM,SRAM,SDRAM,DDR内存5.编…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...