OpenCV入门5——OpenCV的算术与位运算
文章目录
- 图像的加法运算
- 图像的减法运算
- 图像的乘除运算
- 图像的融合
- OpenCV位运算-非操作
- OpenCV位操作-与运算
- OpenCV位操作-或与异或
- 为图像添加水印
图像的加法运算
# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

图像的减法运算

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)img3 = cv2.subtract(res, img2)
cv2.imshow('origin2', img3)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)img3 = cv2.subtract(res, img2)
cv2.imshow('origin2', img3)img3 = cv2.subtract(img, img2)
cv2.imshow('origin3', img3)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()
可以看出,给一张图做加法运算,它可以变亮一些,做减法运算,可以变暗一些

图像的乘除运算
无非是让图片亮得更快一些和亮得更慢一些

图像的融合

# -*- coding: utf-8 -*-
import cv2
import numpy as npcv2.namedWindow('img', cv2.WINDOW_NORMAL)
back = cv2.imread('E://pic//Nurburgring_1920x1080.jpg')
superman = cv2.imread('E://pic//Man_Of_Steel_superman_superhero_____f_1920x1080.jpg')# 只有两张图片的属性一样才可以融合
# print(back.shape)
# print(superman.shape)
# (1080, 1920, 3)
# (1080, 1920, 3)res = cv2.addWeighted(superman, 0.7, back, 0.3, 0)cv2.imshow('img', res)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

OpenCV位运算-非操作

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img[50:150, 50:150] = 255cv2.imshow('img', img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img[50:150, 50:150] = 255new_img = cv2.bitwise_not(img)cv2.imshow('img', img)
cv2.imshow('new_img', new_img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

OpenCV位操作-与运算

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)cv2.imshow('img', img)
cv2.imshow('img2', img2)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)
new_img = cv2.bitwise_and(img, img2)cv2.imshow('img', img)
cv2.imshow('img2', img2)
cv2.imshow('new_img', new_img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

OpenCV位操作-或与异或

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)
# new_img = cv2.bitwise_and(img, img2)
new_img = cv2.bitwise_or(img, img2)
new_img2 = cv2.bitwise_xor(img, img2)cv2.imshow('img', img)
cv2.imshow('img2', img2)
cv2.imshow('new_img', new_img)
cv2.imshow('new_img2', new_img2)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

为图像添加水印
# -*- coding: utf-8 -*-
import cv2
import numpy as np#1. 引入一幅图片
#2. 要有一个LOGO,需要自己创建
#3. 计算图片在什么地方添加,在添加的地方变成黑色
#4. 利用add,将logo 与 图处叠加到一起cv2.namedWindow('img', cv2.WINDOW_NORMAL)
superman = cv2.imread('E://pic//Man_Of_Steel_superman_superhero_____f_1920x1080.jpg')# 创建水印
logo = np.zeros((200, 200, 3), np.uint8)
mask = np.zeros((200, 200), np.uint8)# 绘制水印
logo[20:120, 20:120] = [0, 0, 255]
logo[80:180, 80:180] = [255, 255, 0]mask[20:120, 20:120] = 255
mask[80:180, 80:180] = 255# 对mask按位取反
m = cv2.bitwise_not(mask)# 选择添加logo的位置
roi = superman[0:200, 0: 200]# 和m进行按位与操作
# 因为roi是三通道,而m是单通道,不能直接相与
tmp = cv2.bitwise_and(roi, roi, mask=m)dst = cv2.add(tmp, logo)superman[0:200, 0:200] = dstcv2.imshow('dst', dst)
cv2.imshow('tmp', tmp)
cv2.imshow('mask', mask)
cv2.imshow('logo', logo)
cv2.imshow('img', superman)
cv2.imshow('m', m)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!
相关文章:
OpenCV入门5——OpenCV的算术与位运算
文章目录 图像的加法运算图像的减法运算图像的乘除运算图像的融合OpenCV位运算-非操作OpenCV位操作-与运算OpenCV位操作-或与异或为图像添加水印 图像的加法运算 # -*- coding: utf-8 -*- import cv2 import numpy as npimg cv2.imread(E://pic//4.jpg)# 图的加法运算就是矩阵…...
好用的开源项目地址
Sword: SpringBlade前端UI项目,基于react 、ant design、dva、umi,用于快速构建系统中后台业务。 官网:https://bladex.cn Saber: SpringBlade前端UI项目,对现有的avue2.0、element-ui库进行二次封装。基于json驱动的模块配置&am…...
深度学习(五)softmax 回归之:分类算法介绍,如何加载 Fashion-MINIST 数据集
Softmax 回归 基本原理 回归和分类,是两种深度学习常用方法。回归是对连续的预测(比如我预测根据过去开奖列表下次双色球号),分类是预测离散的类别(手写语音识别,图片识别)。 现在我们已经对回…...
单稳态中间继电器\UEG/A-2H/220V 8A导轨安装 JOSEF约瑟
UEG系列中间继电器 UEG/A-2H2D中间继电器UEG/A-4H4D中间继电器UEG/A-2D中间继电器 UEG/A-2H中间继电器UEG/A-4H中间继电器UEG/A-4D中间继电器 UEG/A-6H中间继电器UEG/A-6D中间继电器UEG/A-8H中间继电器 UEG/A-10D中间继电器UEG/A-10H中间继电器UEG/A-2DPDT中间继电器 UEG/A-4DP…...
2311rust到20版本更新
Rust1.9 Rust1.9中最大的变化是稳定了包括停止恐慌启动的展开过程方法的std::panic模块: use std::panic; let result panic::catch_unwind(|| {println!("hello!"); }); assert!(result.is_ok()); let result panic::catch_unwind(|| {panic!("oh no!"…...
基于Spring、SpringMVC、MyBatis的漫画网站
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring、SpringMVC、MyBatis的漫画网…...
MySQL数据库八股文
MySQL数据库八股文 第一章 数据库基础 1. 数据库概念 数据库是存储数据的仓库,数据库管理系统是操纵和管理数据库的大型软件(如MySQL,InnoDB是其默认的存储引擎),SQL是操作关系型数据库的编程语言。 2. SQL语法与分…...
利用WebSocket +MQ发送紧急订单消息,并在客户端收到消息的用户的页面自动刷新列表
背景:在原有通知公告的基础上,把通知公共的推送服务修改为其他业务收到紧急订单发送公告到消息队列MQ,然后在js中创建一个socket去监听公告,收到公告后刷新所有在订单页面的用户的页面列表(重点就是用户在收到紧急订单…...
R语言——taxize(第一部分)
ropensci 系列之 taxize (中译手册) taxize 包1. taxize支持的网络数据源简介目前支持的API:针对Catalogue of Life(COL) 2. 浅尝 taxize 的一些使用例子2.1. **从NCBI上获取唯一的分类标识符**2.2. **获取分类信息**2…...
【Spring Cloud】黑马头条 用户服务创建、登录功能实现
点击去看上一篇 一、创建用户 model 1.创建用户数据库库 leadnews_user 核心表 ap_user 建库建表语句 这里一定要使用 navicat,执行SQL 文件,以防止 cmd 中的编码问题 先将 SQL 语句,保存在电脑中,再使用 navicat 打开 CREATE…...
聚观早报 |英伟达发布H200;夸克发布自研大模型
【聚观365】11月15日消息 英伟达发布H200 夸克发布自研大模型 iQOO 12系列开启销售 红魔9 Pro配置细节 禾赛科技第三季度营收4.5亿元 英伟达发布H200 全球市值最高的芯片制造商英伟达公司,正在升级其H100人工智能处理器,为这款产品增加更多功能&am…...
15项基本SCADA技术技能
1. 人机界面 人机界面是将操作员连接到设备、系统或机器的仪表板或用户界面。 以下是 hmi 在 scada 技术人员简历中的使用方式: 完成了查尔斯湖废水处理厂和提升站的完整 HMI 图形界面。对加油系统、加油车、PLC、HMI、触摸屏进行故障排除和维修。对 Horner HMI …...
Golang 发送邮件
Go 有内置好的本地库可以发送邮件,在 GitHub 上也有别人写好的第三方包可以发送邮件。 本文将分别介绍一下这两种发送邮件的方式。 1、内置的net/smtp 为了更好的模拟发送邮件,推荐一个邮件测试工具:MailHog,MailHog 是面向开发…...
【ARM Trace32(劳特巴赫) 使用介绍 5-- Trace32 通过 JTAG 命令获取数据寄存器 IDCODE的值】
请阅读【ARM Coresight SoC-400/SoC-600 专栏导读】 文章目录 Trace JTAG Command LineTrace32 JTAG 数据发送命令Trace32 JTAG 数据接收命令Trace32 数据访问修饰符Trace32 IDCODE 脚本实例Trace32 APITrace JTAG Command Line Trace32 JTAG 数据发送命令 JTAG.SHIFTTMS <…...
Python之while/for,continue/break
定义一个随机数: import random numrandom.randint(1,10) while循环: while 条件(): 条件满足时,做的事情1 条件满足时,做的事情2 ...... for循环: for 变量 in range(10): 循环需要执行的代码 else: 循环结束时&…...
卷积神经网络(CNN)衣服图像分类的实现
文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3.归一化4.调整图片格式5. 可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU(如果使用的是CPU可以…...
odoo16前端框架源码阅读——env.js
env.js(env的初始化以及服务的加载) 路径:addons\web\static\src\env.js 这个文件的作用就是初始化env,主要是加载所有的服务。如orm, title, dialog等。 1、env.js 的加载时机 前文我们讲过前端的启动函数,start.…...
浙大恩特客户资源管理系统 SQL注入漏洞复现
0x01 产品简介 浙大恩特客户资源管理系统是一款针对企业客户资源管理的软件产品。该系统旨在帮助企业高效地管理和利用客户资源,提升销售和市场营销的效果。 0x02 漏洞概述 浙大恩特客户资源管理系统中T0140_editAction.entweb接口处存在SQL注入漏洞,未…...
ESP32网络开发实例-BME280传感器数据保存到InfluxDB时序数据库
BME280传感器数据保存到InfluxDB时序数据库 文章目录 BME280传感器数据保存到InfluxDB时序数据库1、BM280和InfluxDB介绍2、软件准备3、硬件准备4、代码实现在本文中,将详细介绍如何将BME280传感器数据上传到InfluxDB中,方便后期数据处理。 1、BM280和InfluxDB介绍 InfluxDB…...
C++中sort()函数的greater<int>()参数
目录 1 基础知识2 模板3 工程化 1 基础知识 sort()函数中的greater<int>()参数表示将容器内的元素降序排列。不填此参数,默认表示升序排列。 vector<int> a {1,2,3}; sort(a.begin(), a.end(), greater<int>()); //将a降序排列 sort(a.begin()…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
