当前位置: 首页 > news >正文

OpenCV入门5——OpenCV的算术与位运算

文章目录

  • 图像的加法运算
  • 图像的减法运算
  • 图像的乘除运算
  • 图像的融合
  • OpenCV位运算-非操作
  • OpenCV位操作-与运算
  • OpenCV位操作-或与异或
  • 为图像添加水印

在这里插入图片描述

图像的加法运算

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

图像的减法运算

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)img3 = cv2.subtract(res, img2)
cv2.imshow('origin2', img3)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('E://pic//4.jpg')# 图的加法运算就是矩阵的加法运算
# 因此,加法运算的两张图必须是相同的形状# print(img.shape)
# (600, 480, 3)img2 = np.ones((600, 480, 3), np.uint8) * 100
cv2.imshow('origin', img)
res = cv2.add(img, img2)
cv2.imshow('result', res)img3 = cv2.subtract(res, img2)
cv2.imshow('origin2', img3)img3 = cv2.subtract(img, img2)
cv2.imshow('origin3', img3)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

可以看出,给一张图做加法运算,它可以变亮一些,做减法运算,可以变暗一些
在这里插入图片描述

图像的乘除运算

无非是让图片亮得更快一些和亮得更慢一些
在这里插入图片描述

图像的融合

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npcv2.namedWindow('img', cv2.WINDOW_NORMAL)
back = cv2.imread('E://pic//Nurburgring_1920x1080.jpg')
superman = cv2.imread('E://pic//Man_Of_Steel_superman_superhero_____f_1920x1080.jpg')# 只有两张图片的属性一样才可以融合
# print(back.shape)
# print(superman.shape)
# (1080, 1920, 3)
# (1080, 1920, 3)res = cv2.addWeighted(superman, 0.7, back, 0.3, 0)cv2.imshow('img', res)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

OpenCV位运算-非操作

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img[50:150, 50:150] = 255cv2.imshow('img', img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img[50:150, 50:150] = 255new_img = cv2.bitwise_not(img)cv2.imshow('img', img)
cv2.imshow('new_img', new_img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

OpenCV位操作-与运算

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)cv2.imshow('img', img)
cv2.imshow('img2', img2)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)
new_img = cv2.bitwise_and(img, img2)cv2.imshow('img', img)
cv2.imshow('img2', img2)
cv2.imshow('new_img', new_img)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

OpenCV位操作-或与异或

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = np.zeros((200, 200), np.uint8)
img2 = np.zeros((200, 200), np.uint8)
img[20:120, 20:120] = 255
img2[80:180, 80:180] = 255# new_img = cv2.bitwise_not(img)
# new_img = cv2.bitwise_and(img, img2)
new_img = cv2.bitwise_or(img, img2)
new_img2 = cv2.bitwise_xor(img, img2)cv2.imshow('img', img)
cv2.imshow('img2', img2)
cv2.imshow('new_img', new_img)
cv2.imshow('new_img2', new_img2)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

为图像添加水印

# -*- coding: utf-8 -*-
import cv2
import numpy as np#1. 引入一幅图片 
#2. 要有一个LOGO,需要自己创建
#3. 计算图片在什么地方添加,在添加的地方变成黑色
#4. 利用add,将logo 与 图处叠加到一起cv2.namedWindow('img', cv2.WINDOW_NORMAL)
superman = cv2.imread('E://pic//Man_Of_Steel_superman_superhero_____f_1920x1080.jpg')# 创建水印
logo = np.zeros((200, 200, 3), np.uint8)
mask = np.zeros((200, 200), np.uint8)# 绘制水印
logo[20:120, 20:120] = [0, 0, 255]
logo[80:180, 80:180] = [255, 255, 0]mask[20:120, 20:120] = 255
mask[80:180, 80:180] = 255# 对mask按位取反
m = cv2.bitwise_not(mask)# 选择添加logo的位置
roi = superman[0:200, 0: 200]# 和m进行按位与操作
# 因为roi是三通道,而m是单通道,不能直接相与
tmp = cv2.bitwise_and(roi, roi, mask=m)dst = cv2.add(tmp, logo)superman[0:200, 0:200] = dstcv2.imshow('dst', dst)
cv2.imshow('tmp', tmp)
cv2.imshow('mask', mask)
cv2.imshow('logo', logo)
cv2.imshow('img', superman)
cv2.imshow('m', m)key = cv2.waitKey(0) & 0xff
if key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

相关文章:

OpenCV入门5——OpenCV的算术与位运算

文章目录 图像的加法运算图像的减法运算图像的乘除运算图像的融合OpenCV位运算-非操作OpenCV位操作-与运算OpenCV位操作-或与异或为图像添加水印 图像的加法运算 # -*- coding: utf-8 -*- import cv2 import numpy as npimg cv2.imread(E://pic//4.jpg)# 图的加法运算就是矩阵…...

好用的开源项目地址

Sword: SpringBlade前端UI项目,基于react 、ant design、dva、umi,用于快速构建系统中后台业务。 官网:https://bladex.cn Saber: SpringBlade前端UI项目,对现有的avue2.0、element-ui库进行二次封装。基于json驱动的模块配置&am…...

深度学习(五)softmax 回归之:分类算法介绍,如何加载 Fashion-MINIST 数据集

Softmax 回归 基本原理 回归和分类,是两种深度学习常用方法。回归是对连续的预测(比如我预测根据过去开奖列表下次双色球号),分类是预测离散的类别(手写语音识别,图片识别)。 现在我们已经对回…...

单稳态中间继电器\UEG/A-2H/220V 8A导轨安装 JOSEF约瑟

UEG系列中间继电器 UEG/A-2H2D中间继电器UEG/A-4H4D中间继电器UEG/A-2D中间继电器 UEG/A-2H中间继电器UEG/A-4H中间继电器UEG/A-4D中间继电器 UEG/A-6H中间继电器UEG/A-6D中间继电器UEG/A-8H中间继电器 UEG/A-10D中间继电器UEG/A-10H中间继电器UEG/A-2DPDT中间继电器 UEG/A-4DP…...

2311rust到20版本更新

Rust1.9 Rust1.9中最大的变化是稳定了包括停止恐慌启动的展开过程方法的std::panic模块: use std::panic; let result panic::catch_unwind(|| {println!("hello!"); }); assert!(result.is_ok()); let result panic::catch_unwind(|| {panic!("oh no!"…...

基于Spring、SpringMVC、MyBatis的漫画网站

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring、SpringMVC、MyBatis的漫画网…...

MySQL数据库八股文

MySQL数据库八股文 第一章 数据库基础 1. 数据库概念 数据库是存储数据的仓库,数据库管理系统是操纵和管理数据库的大型软件(如MySQL,InnoDB是其默认的存储引擎),SQL是操作关系型数据库的编程语言。 2. SQL语法与分…...

利用WebSocket +MQ发送紧急订单消息,并在客户端收到消息的用户的页面自动刷新列表

背景:在原有通知公告的基础上,把通知公共的推送服务修改为其他业务收到紧急订单发送公告到消息队列MQ,然后在js中创建一个socket去监听公告,收到公告后刷新所有在订单页面的用户的页面列表(重点就是用户在收到紧急订单…...

R语言——taxize(第一部分)

ropensci 系列之 taxize (中译手册) taxize 包1. taxize支持的网络数据源简介目前支持的API:针对Catalogue of Life(COL) 2. 浅尝 taxize 的一些使用例子2.1. **从NCBI上获取唯一的分类标识符**2.2. **获取分类信息**2…...

【Spring Cloud】黑马头条 用户服务创建、登录功能实现

点击去看上一篇 一、创建用户 model 1.创建用户数据库库 leadnews_user 核心表 ap_user 建库建表语句 这里一定要使用 navicat,执行SQL 文件,以防止 cmd 中的编码问题 先将 SQL 语句,保存在电脑中,再使用 navicat 打开 CREATE…...

聚观早报 |英伟达发布H200;夸克发布自研大模型

【聚观365】11月15日消息 英伟达发布H200 夸克发布自研大模型 iQOO 12系列开启销售 红魔9 Pro配置细节 禾赛科技第三季度营收4.5亿元 英伟达发布H200 全球市值最高的芯片制造商英伟达公司,正在升级其H100人工智能处理器,为这款产品增加更多功能&am…...

15项基本SCADA技术技能

1. 人机界面 人机界面是将操作员连接到设备、系统或机器的仪表板或用户界面。 以下是 hmi 在 scada 技术人员简历中的使用方式: 完成了查尔斯湖废水处理厂和提升站的完整 HMI 图形界面。对加油系统、加油车、PLC、HMI、触摸屏进行故障排除和维修。对 Horner HMI …...

Golang 发送邮件

Go 有内置好的本地库可以发送邮件,在 GitHub 上也有别人写好的第三方包可以发送邮件。 本文将分别介绍一下这两种发送邮件的方式。 1、内置的net/smtp 为了更好的模拟发送邮件,推荐一个邮件测试工具:MailHog,MailHog 是面向开发…...

【ARM Trace32(劳特巴赫) 使用介绍 5-- Trace32 通过 JTAG 命令获取数据寄存器 IDCODE的值】

请阅读【ARM Coresight SoC-400/SoC-600 专栏导读】 文章目录 Trace JTAG Command LineTrace32 JTAG 数据发送命令Trace32 JTAG 数据接收命令Trace32 数据访问修饰符Trace32 IDCODE 脚本实例Trace32 APITrace JTAG Command Line Trace32 JTAG 数据发送命令 JTAG.SHIFTTMS <…...

Python之while/for,continue/break

定义一个随机数&#xff1a; import random numrandom.randint(1,10) while循环&#xff1a; while 条件(): 条件满足时&#xff0c;做的事情1 条件满足时&#xff0c;做的事情2 ...... for循环&#xff1a; for 变量 in range(10): 循环需要执行的代码 else: 循环结束时&…...

卷积神经网络(CNN)衣服图像分类的实现

文章目录 前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;我的环境&#xff1a; 2. 导入数据3.归一化4.调整图片格式5. 可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU&#xff08;如果使用的是CPU可以…...

odoo16前端框架源码阅读——env.js

env.js&#xff08;env的初始化以及服务的加载&#xff09; 路径&#xff1a;addons\web\static\src\env.js 这个文件的作用就是初始化env&#xff0c;主要是加载所有的服务。如orm, title, dialog等。 1、env.js 的加载时机 前文我们讲过前端的启动函数&#xff0c;start.…...

浙大恩特客户资源管理系统 SQL注入漏洞复现

0x01 产品简介 浙大恩特客户资源管理系统是一款针对企业客户资源管理的软件产品。该系统旨在帮助企业高效地管理和利用客户资源&#xff0c;提升销售和市场营销的效果。 0x02 漏洞概述 浙大恩特客户资源管理系统中T0140_editAction.entweb接口处存在SQL注入漏洞&#xff0c;未…...

ESP32网络开发实例-BME280传感器数据保存到InfluxDB时序数据库

BME280传感器数据保存到InfluxDB时序数据库 文章目录 BME280传感器数据保存到InfluxDB时序数据库1、BM280和InfluxDB介绍2、软件准备3、硬件准备4、代码实现在本文中,将详细介绍如何将BME280传感器数据上传到InfluxDB中,方便后期数据处理。 1、BM280和InfluxDB介绍 InfluxDB…...

C++中sort()函数的greater<int>()参数

目录 1 基础知识2 模板3 工程化 1 基础知识 sort()函数中的greater<int>()参数表示将容器内的元素降序排列。不填此参数&#xff0c;默认表示升序排列。 vector<int> a {1,2,3}; sort(a.begin(), a.end(), greater<int>()); //将a降序排列 sort(a.begin()…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

el-amap-bezier-curve运用及线弧度设置

文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 ‌el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。‌ 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...

理想汽车5月交付40856辆,同比增长16.7%

6月1日&#xff0c;理想汽车官方宣布&#xff0c;5月交付新车40856辆&#xff0c;同比增长16.7%。截至2025年5月31日&#xff0c;理想汽车历史累计交付量为1301531辆。 官方表示&#xff0c;理想L系列智能焕新版在5月正式发布&#xff0c;全系产品力有显著的提升&#xff0c;每…...