多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测
多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测
目录
- 多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果







基本介绍
MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测
模型描述
MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复** MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测**获取。
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
相关文章:
多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测
多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-GRU-Attention粒子群优化门控循环单元融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MAT…...
MySQL缓冲池的优化与性能提升
“不积跬步,无以至千里。” MySQL是许多Web应用的核心数据库,而数据库的性能对于应用的稳定运行至关重要。在MySQL中,缓冲池(Buffer Pool)是一个关键的组件,它直接影响着数据库的性能和响应速度。今天这篇文…...
一些RLHF的平替汇总
卷友们好,我是rumor。 众所周知,RLHF十分玄学且令人望而却步。我听过有的小道消息说提升很大,也有小道消息说效果不明显,究其根本还是系统链路太长自由度太高,不像SFT一样可以通过数据配比、prompt、有限的超参数来可控…...
7.docker部署前端vue项目,实现反向代理配置
介绍: 构建镜像:通过docker构建以nginx为基础的镜像,将vue项目生成的dist包拷贝至nginx目录下,.conf文件做反向代理配置;部署服务:docker stack启动部署服务; 通过执行两个脚本既可以实现构建…...
字符串函数详解
一.字母大小写转换函数. 1.1.tolower 结合cppreference.com 有以下结论: 1.头文件为#include <ctype.h> 2.使用规则为 #include <stdio.h> #include <ctype.h> int main() {char ch A;printf("%c\n",tolower(ch));//大写转换为小…...
Mybatis学习笔记-映射文件,标签,插件
目录 概述 mybatis做了什么 原生JDBC存在什么问题 MyBatis组成部分 Mybatis工作原理 mybatis和hibernate区别 使用mybatis(springboot) mybatis核心-sql映射文件 基础标签说明 1.namespace,命名空间 2.select,insert&a…...
【C++】模板初阶 【 深入浅出理解 模板 】
模板初阶 前言:泛型编程一、函数模板(一)函数模板概念(二)函数模板格式(三)函数模板的原理(四)函数模板的实例化(五)模板参数的匹配原则 三、类模…...
无需API开发,伯俊科技实现电商与客服系统的无缝集成
伯俊科技的无代码开发实现系统连接 自1999年成立以来,伯俊科技一直致力于为企业提供全渠道一盘货的服务。凭借其24年的深耕零售行业的经验,伯俊科技推出了一种无需API开发的方法,实现电商系统和客服系统的连接与集成。这种无代码开发的方式不…...
Python | 机器学习之逻辑回归
🌈个人主页:Sarapines Programmer🔥 系列专栏:《人工智能奇遇记》🔖少年有梦不应止于心动,更要付诸行动。 目录结构 1. 机器学习之逻辑回归概念 1.1 机器学习 1.2 逻辑回归 2. 逻辑回归 2.1 实验目的…...
手机,蓝牙开发板,TTL/USB模块,电脑四者之间的通讯
一,意图 通过手机蓝牙连接WeMosD1R32开发板,开发板又通过TTL转USB与电脑连接.手机通过蓝牙控制开发板上的LED灯的开,关,闪等动作,在电脑上打开串口监视工具观察其状态.也可以通过电脑上的串口监视工具来控制开发板上LED灯的动作,而在手机蓝牙监测工具中显示灯的状态. 二,原料…...
Springboot更新用户头像
人们通常(为徒省事)把一个包含了修改后userName的完整userInfo对象传给后端,做完整更新。但仔细想想,这种做法感觉有点二,而且浪费带宽。 于是patch诞生,只传一个userName到指定资源去,表示该请求是一个局部更新&#…...
Express.js 与 Nest.js对比
Express.js 与 Nest.js对比 自从 Node.js 发布以来,Javascript 在后端领域的使用有所增加。由于 Node.js 的使用越来越多,每天都会有新的框架和工具发布。Express 和 Nest 是使用 Node.js 创建后端应用程序的最著名的框架之一,在本文中&…...
总结 CNN 模型:将焦点转移到基于注意力的架构
一、说明 在计算机视觉时代,卷积神经网络(CNN)几十年来一直是主导范式。直到 2021 年 Vision Transformers (ViTs) 出现,这个领域才开始发生变化。现在,是时候采用受 Transformer 架构启发的基于注意力的模型了&#x…...
2023.11.16 hivesql高阶函数之开窗函数
目录 1.开窗函数的定义 2.数据准备 3.开窗函数之排序 需求:用三种排序方法查询学生的语文成绩排名,并降序显示 4.开窗函数分组 需求:按照科目来分类,使用三种排序方式来排序学生的成绩 5.聚合函数与分组配合使用 6.聚合函数同时和分组以及排序关键字配合使用 --需求1&…...
QTableWidget常用信号的功能
2023年11月18日,周六上午 itemPressed(QTableWidgetItem *item):当某个项目被按下时发出信号。itemClicked(QTableWidgetItem *item):当某个项目被单击时发出信号。itemDoubleClicked(QTableWidgetItem *item):当某个项目被双击时…...
Vue理解01
项目建立流程 项目文件夹终端vue ui可视化新建项目(需要一些时间)vscode打开项目npm run serve运行 架构理解: 首先打开的页面默认是index.htmlindex.html默认引用main.jsmain.js引用需要的页面,默认App.vue。Vue示例挂载可以在…...
4、FFmpeg命令行操作8
生成测试文件 找三个不同的视频每个视频截取10秒内容 ffmpeg -i 沙海02.mp4 -ss 00:05:00 -t 10 -codec copy 1.mp4 ffmpeg -i 复仇者联盟3.mp4 -ss 00:05:00 -t 10 -codec copy 2.mp4 ffmpeg -i 红海行动.mp4 -ss 00:05:00 -t 10 -codec copy 3.mp4 如果音视…...
【MySQL】索引与事务
作者主页:paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《MySQL》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造&a…...
切换为root用户后,conda:未找到命令
问题:切换为root用户后,conda:未找到命令 结论详细用户切换配置路径 结论 问题:切换为root用户后,conda:未找到命令 (anaconda) 解决:在~/.bashrc配置里增加conda的路径 详细 用户切换 1 切…...
Qt退出界面
void Dialog::on_pushButton_clicked() {if(ui->lineEdit->text() "admin" && ui->lineEdit_2->text() "123"){accept();//退出} }...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
