当前位置: 首页 > news >正文

C++ opencv基本用法【学习笔记(九)】

这篇博客为修改过后的转载,因为没有转载链接,所以选了原创

文章目录

    • 一、vs code 结合Cmake debug
      • 1.1 配置tasks.json
      • 1.2 配置launch.json
    • 二、图片、视频、摄像头读取显示
      • 2.1 读取图片并显示
      • 2.2 读取视频文件并显示
      • 2.3 读取摄像头并写入文件
    • 三、图片基本操作
      • 3.1 颜色转换
      • 3.2 图像filtering
      • 3.3 形状调整
      • 3.4 绘制
    • 四、RTSP 视频流
      • 4.1 本机构造RTSP视频流(optional)
      • 4.2 使用ffmpeg作为视频解码
    • 五、人脸检测小例子

一、vs code 结合Cmake debug

1.1 配置tasks.json

文件架构如下:
在这里插入图片描述
需要注意"-DCMAKE_BUILD_TYPE=Debug" 要设置为Debug模式。

{"version": "2.0.0","tasks": [{// cmake配置"type": "cppbuild","label": "CMake配置","command": "cmake", // cmake命令"args": ["-S .", // 源码目录"-B build", // 编译目录"-DCMAKE_BUILD_TYPE=Debug" // 编译类型],"options": {"cwd": "${workspaceFolder}" // 工作目录},"problemMatcher": ["$gcc"],"group": "build",},{// cmake编译"type": "cppbuild","label": "CMake编译","command": "cmake", // cmake命令"args": ["--build", // 编译"build", // 编译目录],"options": {"cwd": "${workspaceFolder}" // 工作目录},"problemMatcher": ["$gcc"],"group": "build","dependsOn": ["CMake配置" // 依赖CMake配置,先执行CMake配置]},{// 删除build目录"type": "shell","label": "删除build目录","command": "rm -rf build","options": {"cwd": "${workspaceFolder}" // 工作目录},"problemMatcher": ["$gcc"],"group": "build",}]
}

1.2 配置launch.json

{// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387"version": "0.2.0","configurations": [{"name": "CMake调试","type": "cppdbg","request": "launch","program": "${workspaceFolder}/build/cmake_debug", // 编译后的程序,需要结合CMakeLists.txt中的add_executable()函数"args": [],"stopAtEntry": false,"cwd": "${workspaceFolder}","environment": [],"externalConsole": false,"MIMode": "gdb","miDebuggerPath": "/usr/bin/gdb","setupCommands": [{"description": "Enable pretty-printing for gdb","text": "-enable-pretty-printing","ignoreFailures": true}],"preLaunchTask": "CMake编译"}]
}

二、图片、视频、摄像头读取显示

2.1 读取图片并显示

// 使用imread函数读取图片,和Python用法类似
// 读取的数据保存在Mat类型的变量image中,Mat是opencv中的图像数据结构,类似numpy中的ndarray
cv::Mat image = cv::imread("图片路径");// 输出数据,以numpy和Python list格式输出
std::cout << cv::format(image, cv::Formatter::FMT_NUMPY) << std::endl;
std::cout << cv::format(image, cv::Formatter::FMT_PYTHON) << std::endl;// 判断图像是否读取成功,返回true表示失败
if (image.empty())
{std::cout << "无法读取图片"  << std::endl;return 1;
} 
// imshow显示图像
cv::imshow("opencv demo", image);
// 保存图像
cv::imwrite("./output/gray_image.jpg", gray_image);// 等待按键
cv::waitKey(0); 

2.2 读取视频文件并显示

// 读取视频:创建了一个VideoCapture对象,参数为视频路径
cv::VideoCapture capture("视频路径");// 判断视频是否读取成功,返回true表示成功
if (!capture.isOpened())
{std::cout << "无法读取视频"  << std::endl;return 1;
}// 读取视频帧,使用Mat类型的frame存储返回的帧
cv::Mat frame;
// 循环读取视频帧
while (true)
{// 读取视频帧,使用 >> 运算符或者read()函数,他的参数是返回的帧capture.read(frame);// capture >> frame;// 显示视频帧cv::imshow("opencv demo", frame);
}

2.3 读取摄像头并写入文件

// 读取视频:创建了一个VideoCapture对象,参数为摄像头编号
cv::VideoCapture capture(0);// 写入MP4文件,参数分别是:文件名,编码格式,帧率,帧大小  
cv::VideoWriter writer("record.mp4", cv::VideoWriter::fourcc('H', '2', '6', '4'), 20, cv::Size(640, 480));// 写入视频
writer.write(frame);

三、图片基本操作

3.1 颜色转换

// BGR -> Gray
// 三个参数分别是输入图像、输出图像、转换方式
cv::cvtColor(src, gray, cv::COLOR_BGR2GRAY);
// BGR -> HSV,Hue(色调)、Saturation(饱和度)、Value(明度)
cv::cvtColor(src, hsv, cv::COLOR_BGR2HSV);
// BGR -> RGB
cv::cvtColor(src, rgb, cv::COLOR_BGR2RGB);

3.2 图像filtering

// 三个参数分别是输入图像、输出图像、卷积核大小
cv::GaussianBlur(src, blur, cv::Size(7, 7), 0);
// 膨胀
// 三个参数分别是输入图像、输出图像、卷积核大小
cv::dilate(src, dilate, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5)));
// 腐蚀
// 三个参数分别是输入图像、输出图像、卷积核大小
cv::erode(src, erode, cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5)));

3.3 形状调整

// ======== resize ========
// 三个参数分别是输入图像、输出图像、输出图像大小
cv::resize(src, resize, cv::Size(320, 240));// ======== copy ========
cv::Mat copy;
src.copyTo(copy);
// ======== ROI裁剪 ========
cv::Rect rect(100, 100, 200, 100); // x, y, width, height
cv::Mat roi = src(rect);
cv::imwrite("./output/3.roi.jpg", roi);// ======== 拼接 ========
cv::Mat dog_img = cv::imread("./media/dog.jpg");
cv::Mat dog_resize;
cv::resize(dog_img, dog_resize, cv::Size(320, 240));// 水平拼接,需要保证两张图片的高度(rows)一致
cv::Mat hconcat_img;
cv::hconcat(resize, dog_resize, hconcat_img);
cv::imwrite("./output/3.hconcat.jpg", hconcat_img);// 或者使用vector方式
std::vector<cv::Mat> imgs{resize, dog_resize, resize, dog_resize};
cv::Mat hconcat_img2;
cv::hconcat(imgs, hconcat_img2);
cv::imwrite("./output/3.hconcat2.jpg", hconcat_img2);// 数组方式
cv::Mat imgs_arr[] = {dog_resize, resize, dog_resize, resize};
cv::Mat hconcat_img3;
cv::hconcat(imgs_arr, 4, hconcat_img3); // 4是数组长度
cv::imwrite("./output/3.hconcat3.jpg", hconcat_img3);// 垂直拼接,需要保证两张图片的宽度(cols)一致
cv::Mat vconcat_img;
cv::vconcat(resize, dog_resize, vconcat_img);
cv::imwrite("./output/3.vconcat.jpg", vconcat_img);// ======== 翻转 ========
cv::Mat flip;
// 三个参数分别是输入图像、输出图像、翻转方向
cv::flip(src, flip, 1); // 1表示水平翻转,0表示垂直翻转,-1表示水平垂直翻转// ======== 旋转 ========
cv::Mat rotate;
// 三个参数分别是输入图像、输出图像、旋转角度
cv::rotate(src, rotate, cv::ROTATE_90_CLOCKWISE); // 顺时针旋转90度

3.4 绘制

// 创建一个黑色图像,参数分别是图像大小、图像类型,CV_8UC3表示8位无符号整数,3通道
cv::Mat image = cv::Mat::zeros(cv::Size(600, 600), CV_8UC3);// 绘制直线,参数分别是图像、起点、终点、颜色、线宽、线型
cv::line(image, cv::Point(50, 50), cv::Point(350, 250), cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
// 绘制矩形,参数分别是图像、左上角、右下角、颜色、线宽、线型
cv::rectangle(image, cv::Point(50, 50), cv::Point(350, 250), cv::Scalar(0, 255, 0), 2, cv::LINE_AA);
// 绘制圆形,参数分别是图像、圆心、半径、颜色、线宽、线型
cv::circle(image, cv::Point(200, 150), 100, cv::Scalar(255, 0, 0), 2, cv::LINE_AA);
// 实心
cv::circle(image, cv::Point(200, 150), 50, cv::Scalar(255, 0, 0), -1, cv::LINE_AA);// ================== 多边形 ==================
cv::Point points[2][4]; // 定义两个多边形的顶点数组
// 第一个多边形的顶点
points[0][0] = cv::Point(100, 115);
points[0][1] = cv::Point(255, 135);
points[0][2] = cv::Point(140, 365);
points[0][3] = cv::Point(100, 300);
// 第二个多边形的顶点
points[1][0] = cv::Point(300, 315);
points[1][1] = cv::Point(555, 335);
points[1][2] = cv::Point(340, 565);
points[1][3] = cv::Point(300, 500);
// ppt[] 要同时添加两个多边形顶点数组的地址)
const cv::Point *pts_v[] = {points[0], points[1]};
// npts_v[]要定义每个多边形的定点数
int npts_v[] = {4, 4};
// 绘制多边形,参数分别是图像、顶点数组、顶点数、是否闭合、颜色、线宽、线型
cv::polylines(image, pts_v, npts_v, 2, true, cv::Scalar(255, 0, 255), 2, 8, 0);// ================== 使用vector绘制多边形 ==================
std::vector<cv::Point> points_v;
// 随机生成5个点
for (int i = 0; i < 5; i++)
{points_v.push_back(cv::Point(rand() % 600, rand() % 600));
}
// 绘制多边形,参数分别是图像、顶点数组、是否闭合、颜色、线宽、线型
cv::polylines(image, points_v, true, cv::Scalar(255, 0, 0), 2, 8, 0);// ================== 绘制文字 ==================
// 参数分别是图像、文字、文字位置、字体、字体大小、颜色、线宽、线型
cv::putText(image, "Hello World!", cv::Point(400, 50), cv::FONT_HERSHEY_SIMPLEX, 1.0, cv::Scalar(255, 255, 255), 2, 8, 0);

四、RTSP 视频流

4.1 本机构造RTSP视频流(optional)

# Ubuntu安装ffmpeg
sudo apt-get install ffmpeg# 赋予权限
chmod +x rtsp-simple-server
chmod +x start_server.sh
# 运行服务
./start_server.sh# 退出服务
pkill rtsp-simple-server
pkill ffmpeg

4.2 使用ffmpeg作为视频解码

// CAP_FFMPEG:opencv 使用ffmpeg解码
cv::VideoCapture stream1 = cv::VideoCapture("rtsp地址", cv::CAP_FFMPEG);

五、人脸检测小例子

附件位置:5.face_detection

相关文章:

C++ opencv基本用法【学习笔记(九)】

这篇博客为修改过后的转载&#xff0c;因为没有转载链接&#xff0c;所以选了原创 文章目录 一、vs code 结合Cmake debug1.1 配置tasks.json1.2 配置launch.json 二、图片、视频、摄像头读取显示2.1 读取图片并显示2.2 读取视频文件并显示2.3 读取摄像头并写入文件 三、图片基…...

理财和银保区别

理财和银保在以下六个方面存在区别&#xff1a; 产品性质&#xff1a;银行理财是银行发行的理财产品&#xff0c;属于金融投资&#xff0c;主要投向债券、票据等固定收益类资产。银保产品是保险公司发行的保险产品&#xff0c;属于保障投资&#xff0c;除了固定收益类资产外&am…...

一文浅入Springboot+mybatis-plus+actuator+Prometheus+Grafana+Swagger2.9.2开发运维一体化

Swagger是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTFUL风格的Web服务,是非常流行的API表达工具。 Swagger能够自动生成完善的 RESTFUL AP文档,,同时并根据后台代码的修改同步更新,同时提供完整的测试页面来调试API。 Prometheus 是一个开源的服务监控系统和时…...

【日常】爬虫技巧进阶:textarea的value修改与提交问题(以智谱清言为例)

序言 记录一个近期困扰了一些时间的问题。 我很喜欢在爬虫中遇到问题&#xff0c;因为这意味着在这个看似简单的事情里还是有很多值得去探索的新东西。其实本身爬虫也是随着前后端技术的不断更新在进步的。 文章目录 序言Preliminary1 问题缘起1.1 Selenium长文本输入阻塞1.2…...

C++知识点总结(6):高精度乘法真题代码

一、高精度数 低精度数 #include <iostream> #include <cstring> using namespace std;int main() {// 存储并输入两个数字 char a_str[1005] {};long long b;cin >> a_str >> b;// 特例先行&#xff1a;结果是0的情况if (a 0 || b 0){cout <&…...

Polygon zkEVM的Dragon Fruit和Inca Berry升级

1. Polygon zkEVM的Dragon Fruit升级 2023年8月31日&#xff0c;Polygon zkEVM团队宣称启动了其Mainnet Beta的Dragon Fruit升级的10天timelock&#xff0c;预计将于2023年9月11日激活。 Dragon Fruit升级点有&#xff1a; 改进了网络支持了最新的以太坊opcode——PUSH0 1.…...

【计算机网络学习之路】网络基础1

文章目录 前言一. 计算机网络发展局域网和广域网 二. 网络协议三. OSI七层模型四. TCP/IP四层&#xff08;五层&#xff09;模型五. 计算机体系结构与网络协议栈六. 协议形式及局域网通信数据包封装与分用 七. 跨网络通信八. MAC地址与网络通信的理解结束语 前言 本系列文章是…...

HTTP/2.0协议详解

前言 HTTP/2.0&#xff1a;互联网通信的革新标准 随着互联网技术的飞速发展&#xff0c;HTTP协议作为互联网应用最广泛的通信协议&#xff0c;也在不断演进和优化。HTTP/2.0是HTTP协议的最新版本&#xff0c;它旨在提供更高效、更安全、更快速的互联网连接。 一、HTTP/2.0的优…...

Python中的Random模块详解:生成随机数与高级应用

在Python编程中&#xff0c;随机数生成是许多应用的基础之一。random模块为我们提供了生成伪随机数的丰富工具&#xff0c;从简单的随机数生成到复杂的应用场景&#xff0c;都有很多功能可以探索。本文将深入介绍random模块的各个方面&#xff0c;通过详实的示例代码&#xff0…...

(论文阅读32/100)Flowing convnets for human pose estimation in videos

32.文献阅读笔记 简介 题目 Flowing convnets for human pose estimation in videos 作者 Tomas Pfister, James Charles, and Andrew Zisserman, ICCV, 2015. 原文链接 https://arxiv.org/pdf/1506.02897.pdf 关键词 Human Pose Estimation in Videos 研究问题 视频…...

【设计一个缓存--针对各种类型的缓存】

设计一个缓存--针对各种类型的缓存 1. 设计顶层接口2. 设计抽象类 -- AbstractCacheManager3. 具体子类3.1 -- AlertRuleItemExpCacheManager3.2 -- AlertRuleItemSrcCacheManager 4. 类图关系 1. 设计顶层接口 // 定义为一个泛型接口,提供给抽象类使用 public interface Cach…...

Django部署时静态文件配置的坑

Django部署时静态文件配置配置的坑 近期有个需求是用django进行开发部署&#xff0c;结果发现静态文件配置的坑是真的多&#xff0c;另外网上很多的内容也讲不清楚原理&#xff0c;就是这样这样&#xff0c;又那样那样&#xff0c;进了不少坑&#xff0c;这里记录一下关于css,…...

Android---网络编程优化

网络请求操作是一个 App 的重要组成部分&#xff0c;程序大多数问题都是和网络请求有关。使用 OkHttp 框架后&#xff0c;可以通过 EventListener 来查看一次网络请求的详细情况。一次完整的网络请求会包含以下几个步骤。 也就是说&#xff0c;一次网络请求的操作是从 DNS 解析…...

《算法通关村——不简单的字符串转换问题》

《算法通关村——不简单的字符串转换问题》 8. 字符串转换整数 (atoi) 请你来实现一个 myAtoi(string s) 函数&#xff0c;使其能将字符串转换成一个 32 位有符号整数&#xff08;类似 C/C 中的 atoi 函数&#xff09;。 函数 myAtoi(string s) 的算法如下&#xff1a; 读入…...

给VSCode插上一双AI的翅膀

#AI编程助手哪家好&#xff1f;DevChat“真”好用# 文章目录 前言一、安装DevChat1.1、访问地址1.2、注册1.3、在VSCode里安装DevChat插件1.3.1、未安装状态1.3.2、已安装状态 二、设置Access Key2.1. 点击左下角管理&#xff08;“齿轮”图标&#xff09;—命令面板&#xff…...

2023年亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

机器学习的医疗乳腺癌数据的乳腺癌疾病预测

项目视频讲解:基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测 完整代码数据分享_哔哩哔哩_bilibili 效果演示: 代码: #第一步!导入我们需要的工具 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inlin…...

解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 快速浏览一下头条新闻&#xff0c;你会发现生成式AI似乎无处不在。事实上&#xff0c;一些新闻标题甚至可能是通过生成式AI编写的&#xff0c;例如OpenAI旗下的ChatGPT&#xff0c;这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。 当人们…...

国产化项目改造:使用达梦数据库和东方通组件部署,前后端分离框架

前提&#xff1a;前后端分离前后端包都要用war包。 1、springboot后端改变war包 pom文件添加 <packaging>war</packaging>添加依赖&#xff0c;并且支持tomcat<!-- war包 --><dependency><groupId>org.springframework.boot</groupId><…...

Nginx实现负载均衡

Nginx实现负载均衡 负载均衡的作用 1、解决单点故障&#xff0c;让web服务器构成一个集群 2、将请求平均下发给后端的web服务器 负载均衡的软硬件介绍 负载均衡软件&#xff1a; # nginx 四层负载均衡&#xff1a;stream&#xff08;nginx 1.9版本以后有stream模块&#x…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

小智AI+MCP

什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析&#xff1a;AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github&#xff1a;https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...