当前位置: 首页 > news >正文

anaconda中安装pytorch和TensorFlow环境并在不同环境中安装kernel


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

博主原文链接:https://www.yourmetaverse.cn/nlp/466/

请添加图片描述

(封面图由文心一格生成)

anaconda中安装pytorch和TensorFlow环境并在不同环境中安装kernel

Anaconda是数据科学和机器学习领域中广泛使用的Python分发版。它简化了包管理和部署过程,特别是在处理复杂的依赖关系时。在本教程中,我将指导你如何在Anaconda中创建独立的PyTorch和TensorFlow环境,并在每个环境中安装相应的Jupyter Notebook kernel。

步骤1:安装Anaconda

首先,确保你的系统中安装了Anaconda。你可以从Anaconda官网下载并遵循安装指南进行安装。

步骤2:创建独立环境

打开Anaconda命令行界面。

创建PyTorch环境

  1. 创建一个新环境,命名为pytorch_env
    conda create -n pytorch_env python=3.8
    
  2. 激活这个环境:
    conda activate pytorch_env
    

创建TensorFlow环境

  1. 创建一个新环境,命名为tensorflow_env
    conda create -n tensorflow_env python=3.8
    
  2. 激活这个环境:
    conda activate tensorflow_env
    

步骤3:安装PyTorch和TensorFlow

确保你在正确的环境中。

在PyTorch环境中安装PyTorch

pytorch_env环境中,运行以下命令:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

根据你的系统配置选择合适的CUDA版本。

在TensorFlow环境中安装TensorFlow

tensorflow_env环境中,运行以下命令:

conda install tensorflow

步骤4:为每个环境安装Jupyter Notebook kernel

为PyTorch环境安装kernel

  1. 确保你在pytorch_env环境中。
  2. 安装ipykernel:
    conda install ipykernel
    
  3. 安装一个新的kernel:
    python -m ipykernel install --user --name=pytorch_env --display-name="PyTorch Kernel"
    

为TensorFlow环境安装kernel

  1. 确保你在tensorflow_env环境中。
  2. 安装ipykernel:
    conda install ipykernel
    
  3. 安装一个新的kernel:
    python -m ipykernel install --user --name=tensorflow_env --display-name="TensorFlow Kernel"
    

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

相关文章:

anaconda中安装pytorch和TensorFlow环境并在不同环境中安装kernel

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...

记一次解决Pyqt6/Pyside6添加QTreeView或QTreeWidget导致窗口卡死(未响应)的新路历程,打死我都想不到是这个原因

文章目录 💢 问题 💢🏡 环境 🏡📄 代码💯 解决方案 💯⚓️ 相关链接 ⚓️💢 问题 💢 我在窗口中添加了一个 QTreeWidget控件 ,但是程序在运行期间,只要鼠标进入到 QTreeWidget控件 内进行操作,时间超过几秒中就会出现窗口 未响应卡死的 状态 🏡 环境 �…...

用照片预测人的年龄【图像回归】

在图像分类任务中,卷积神经网络 (CNN) 是非常强大的神经网络架构。 然而,鲜为人知的是,它们同样能够执行图像回归任务。 图像分类和图像回归任务之间的基本区别在于分类任务中的目标变量(我们试图预测的东西)不是连续…...

Fork项目新分支如何同步

这里以seata项目为示例: 一、添加Fork仓库的源仓库 git remote add seata gitgithub.com:seata/seata.git二、fetch git fetch seata...

Linux 常用压缩格式

Linux 常用压缩格式简介 Linux系统用户可以根据自己的需求选择合适的压缩工具来进行文件压缩和解压操作。Linux系统中常用的压缩软件都有相应的命令行工具,并且可以通过软件包管理器进行安装。主要有gzip、bzip2、zip、tar、7z。 gzip:gzip是一个广泛使…...

高效背单词——单词APP安利

大英赛,CET四六级,以及考研英语,都在不远的未来再度来临,年复一年的考试不曾停息,想要取得好成绩,需要我们的重视并赋予相应的努力。对于应试英语,词汇量是不可忽略的硬性要求。相比于传统默写&…...

力扣 字母异位词分组 哈表 集合

👨‍🏫 力扣 字母异位词分组 ⭐ 思路 由于互为字母异位词的两个字符串包含的字母相同,因此对两个字符串分别进行排序之后得到的字符串一定是相同的,故可以将排序之后的字符串作为哈希表的键。 🍑 AC code class Solut…...

⑩⑤【DB】详解MySQL存储过程:变量、游标、存储函数、循环,判断语句、参数传递..

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ MySQL存储过程 1. 介绍2. 使用3. 变量①系统变…...

使用SpringBoot进行游戏服务器开发

背景: 之前一直只考虑用JavaSe进行游戏服务器开发,目前项目使用了Spring,发现还是非常好的,好处如下: 好处1:依赖注入非常方便,我们只使用Spring最基本的功能即可,这样子就算是有一些模块不使用Spring管理…...

数据结构——树状数组

文章目录 前言问题引入问题分析树状数组lowbit树状数组特性初始化一个树状数组更新操作前缀和计算区间查询 总结 前言 原题的连接 最近刷leetcode的每日一题的时候,遇到了一个区间查询的问题,使用了一种特殊的数据结构树状数组,学习完之后我…...

Untiy 使用RotateAround()方法实现物体围绕某个点或者某个物体旋转

Untiy 实现物体围绕指定点或者某个物体旋转,可使用RotateAround()方法。 语法: public void RotateAround(Vector3 point, Vector3 axis, float angle); 其中,point:旋转中心点位置; axis:要围绕的轴,如x,y,z angel…...

图像分类(五) 全面解读复现ResNet

解读 Abstract—摘要 翻译 更深的神经网络往往更难以训练,我们在此提出一个残差学习的框架,以减轻网络的训练负担,这是个比以往的网络要深的多的网络。我们明确地将层作为输入学习残差函数,而不是学习未知的函数。我们提供了非…...

使用html2canvas转换table为图片时合并单元格rowspan失效,无边框显示问题解决(React实现)

最近使用 html2canvas导出Table表单为图片,但是转换出的图片被合并的单元格没有显示边框 查了原因是因为我为tr设置了背景色,然后td设置了rowspan,设置了rowspan的单元格就会出现边框不显示的问题。 解决方法就是取消tr的背景色,然…...

pandas教程:Time Series Basics 时间序列基础

文章目录 11.2 Time Series Basics(时间序列基础)1 Indexing, Selection, Subsetting(索引,选择,取子集)2 Time Series with Duplicate Indices(重复索引的时间序列) 11.2 Time Seri…...

【C++初阶】STL详解(四)vector的模拟实现

本专栏内容为:C学习专栏,分为初阶和进阶两部分。 通过本专栏的深入学习,你可以了解并掌握C。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库&…...

Zookeeper学习笔记(2)—— Zookeeper API简单操作

前置知识&#xff1a;Zookeeper学习笔记&#xff08;1&#xff09;—— 基础知识-CSDN博客 Zookeeper集群搭建部分 前提&#xff1a;保证zookeeper集群处于启动状态 环境搭建 依赖配置 <dependencies><dependency><groupId>junit</groupId><arti…...

YOLOv8-Seg改进:Backbone改进 |Next-ViT堆栈NCB和NTB 构建先进的CNN-Transformer混合架构

🚀🚀🚀本文改进:Next-ViT堆栈NCB和NTB 构建先进的CNN-Transformer混合架构,包括nextvit_small, nextvit_base, nextvit_large,相比较yolov8-seg各个版本如下: layersparametersgradientsGFLOPsnextvit_small61033841075...

DocCMS keyword SQL注入漏洞复现 [附POC]

文章目录 DocCMS keyword SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 DocCMS keyword SQL注入漏洞复现 [附POC] 0x01 前言 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测…...

利用(Transfer Learning)迁移学习在IMDB数据上训练一个文本分类模型

1. 背景 有些场景下&#xff0c;开始的时候数据量很小&#xff0c;如果我们用一个几千条数据训练一个全新的深度机器学习的文本分类模型&#xff0c;效果不会很好。这个时候你有两种选择&#xff0c;1.用传统的机器学习训练&#xff0c;2.利用迁移学习在一个预训练的模型上训练…...

pom.xml格式化快捷键

在软件开发和编程领域&#xff0c;"格式化"通常指的是将代码按照一定的规范和风格进行排列&#xff0c;以提高代码的可读性和维护性。格式化代码有助于使代码结构清晰、统一&#xff0c;并符合特定的编码规范。 格式化可以包括以下方面&#xff1a; 缩进&#xff1a…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...