当前位置: 首页 > news >正文

43-设计问题-最小栈

原题链接:

198. 打家劫舍

题目描述:

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

数据范围: 

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

测试样例:

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。偷窃到的最高金额 = 2 + 9 + 1 = 12 。

思路:二维动态规划

对于每一家而言,都有 偷了 没偷 这两种状态,所以可以用一个二维 dp 数组(共 2 行 n 列)来表示某一家是否被偷。顺序遍历原数组,模拟小偷从第一家偷到最后一家的过程。那么有 dp[0][i] 表示小偷走到索引为 i 的那一家,但是没偷他们家时获得的最大金额;相应的 dp[1][i] 表示小偷走到索引为 i 的那一家,并且偷了他们家时获得的最大金额。因为被偷的两家不能相邻,所以可以得到递推关系:dp[0][i] = max(dp[0][i-1], dp[1][i-1])因为 dp[0][i] 表示没有偷这一家所以偷没偷前面的一家无所谓,返回二者中的最大值dp[1][i] = dp[0][i-1] + nums[i]因为 dp[1][i] 表示偷了这一家所以前一家必定不能偷,只能是 dp[0][i-1] 但是又因为偷了当前这个一家收益还要增加 nums[i]。并且可以得到初始值分别为 dp[0][0] = 0 和 dp[1][0] = nums[0]。仔细思考一下发现不重复不遗漏,那么最终的结果就是小偷走到最后一家时的最大收益 max(dp[0][n-1], dp[1][n-1])

代码:

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();int dp[2][n];dp[0][0] = 0, dp[1][0] = nums[0];for (int i = 1; i < n; i ++) {dp[0][i] = max(dp[0][i-1], dp[1][i-1]);dp[1][i] = dp[0][i-1] + nums[i];}return max(dp[0][n-1], dp[1][n-1]);}
};

复杂度:

时间复杂度:

遍历了一遍整个数组

时间复杂度为 O(N)

空间复杂度:

创建了一个辅助数组存储 dp 结果

空间复杂度为 O(N)

相关文章:

43-设计问题-最小栈

原题链接&#xff1a; 198. 打家劫舍 题目描述&#xff1a; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&a…...

基于RK3588全高端智能终端机器人主板

一、小尺寸板型设计 该款主板为小型板&#xff0c;尺寸仅为125*85mm&#xff0c;更小更紧凑&#xff0c;可完美适应各类高端智能自助终端&#xff1b; 二、八核高端处理器 采用RK3588S八核64位处理器&#xff0c;8nm LP制程&#xff0c;主频最高达2.4GHz&#xff0c;搭载Andr…...

穿越风波,“长红”的直播电商依然扎根产业和消费者

当消费者将最后一个快递拿进家门&#xff0c;2023年的双11也就落下了帷幕。相较于往年组队、拼单的玩法&#xff0c;如今最受欢迎的双11 流程&#xff0c;或许已经变成点进自己心仪主播、店铺的直播间&#xff0c;翻阅最新的产品清单&#xff0c;从中选择购物目标&#xff0c;在…...

LLM大模型 (chatgpt) 在搜索和推荐上的应用

目录 1 大模型在搜索的应用1.1 召回1.1.1 倒排索引1.1.2 倒排索引存在的问题1.1.3 大模型在搜索召回的应用 (实体倒排索引&#xff09; 1.2 排序1.2.1 大模型在搜索排序应用&#xff08;融入LLM实体排序&#xff09; 2 大模型在推荐的应用2.1 学术界关于大模型在推荐的研究2.2 …...

中国净初级生产力年度合成产品NPP(MYD17A3H.006)

中国净初级生产力年度合成产品NPP&#xff08;MYD17A3H.006&#xff09;由航天宏图实验室提供&#xff0c;根据NASA MODIS数据&#xff08;MYD17A3H.006&#xff09;通过航天宏图 Smoother计算得到的平滑后NPP产品&#xff0c;解决了影像云雾覆盖、像元异常值等问题。对处理后的…...

GitHub如何删除仓库

GitHub如何删除仓库 删除方法第一步第二步第三步 删除方法 第一步 在仓库的界面选择Settings 第二步 选择General,页面拉到最后。 第三步 删除仓库。...

漫谈广告机制设计 | 万剑归宗:聊聊广告机制设计与收入提升的秘密(3)

​书接上文漫谈广告机制设计 | 万剑归宗&#xff1a;聊聊广告机制设计与收入提升的秘密&#xff08;2&#xff09;&#xff0c;我们聊到囚徒困境是完全信息静态博弈&#xff0c;参与人存在占优策略&#xff0c;最终达到占优均衡&#xff0c;并且是对称占优均衡。接下来我们继续…...

安装系统时无raid驱动处理办法

场景描述 安装系统时可以进入安装界面&#xff0c;但是无法识别到硬盘&#xff0c;查看服务器硬件均无异常且从bios或者raid配置界面中能正常看到raid信息及硬盘信息&#xff0c;运行lspci 命令查看到服务器有raid卡&#xff0c;但是未加载驱动。 获取驱动程序模块 查看raid…...

ForkLift:macOS文件管理器/FTP客户端

ForkLift 是一款macOS下双窗口的文件管理器&#xff0c;可以代替本地的访达。ForkLift同时具备连接Ftp、SFtp、WebDav以及云服务器。 ForkLift还具备访达不具备的小功能&#xff0c;比如从文件夹位置打开终端&#xff0c;显示隐藏文件&#xff0c;制作替换等功能。ForkLift 是一…...

信息系统项目管理师 第四版 第20章 高级项目管理

1.项目集管理 1.1.项目集管理标准 1.2.项目集管理角色和职责 1.3.项目集管理绩效域 2.项目组合管理 2.1.项目组合管理标准 2.2.项目组合管理角色和职责 2.3.项目组合管理绩效域 3.组织级项目管理 3.1.组织级项目管理标准 3.2.业务价值与业务评估 3.3.OPM框架要素 3…...

Apache Pulsar 技术系列 - 基于 Pulsar 的海量 DB 数据采集和分拣

导语 Apache Pulsar 是一个多租户、高性能的服务间消息传输解决方案&#xff0c;支持多租户、低延时、读写分离、跨地域复制、快速扩容、灵活容错等特性。本文是 Pulsar 技术系列中的一篇&#xff0c;主要介绍 Pulsar 在海量DB Binlog 增量数据采集、分拣场景下的应用。 前言…...

HDFS、MapReduce原理--学习笔记

1.Hadoop框架 1.1框架与Hadoop架构简介 &#xff08;1&#xff09;广义解释 从广义上来说&#xff0c;随着大数据开发技术的快速发展与逐步成熟&#xff0c;在行业里&#xff0c;Hadoop可以泛指为&#xff1a;Hadoop生态圈。 也就是说&#xff0c;Hadoop指的是大数据生态圈整…...

PC端使子组件的弹框关闭

子组件 <template><el-dialog title"新增部门" :visible"showDialog" close"close"> </el-dialog> </template> <script> export default {props: {showDialog: {type: Boolean,default: false,},},data() {retu…...

PHPStorm PHP-CS-Fixer

我用的是brew安装&#xff1a; brew install php-cs-fixer phpstorm配置&#xff1a; setting搜索fixer 指定安装php-cs-fixer的目录&#xff1a; https://github.com/PHP-CS-Fixer/PHP-CS-Fixer/blob/master/doc/installation.rst 图文详解PHPStorm实现自动执行代码格式化-…...

SpringBoot中日志的使用log4j

SpringBoot中日志的使用log4j 项目中日志系统是必不可少的&#xff0c;目前比较流行的日志框架有 log4j、logback 等&#xff0c;这两个框架的作者是同一个 人&#xff0c;Logback 旨在作为流行的 log4j 项目的后续版本&#xff0c;从而恢复 log4j 离开的位置。 另外 slf4j(…...

迭代器与生成器

章节目录&#xff1a; 一、迭代器1.1 相关概述1.2 基本使用1.3 自定义迭代器 二、生成器2.1 相关概述2.2 基本使用2.3 三种应用场景 三、yield 和 class 定义的迭代器对比四、结束语 一、迭代器 1.1 相关概述 迭代是 Python 最强大的功能之一&#xff0c;是访问集合元素的一种…...

适用于 Windows 的 10 个最佳视频转换器:快速转换高清视频

您是否遇到过由于格式不兼容而无法在您的设备上播放视频或电影的情况&#xff1f;您想随意播放从您的相机、GoPro 导入的视频&#xff0c;还是以最合适的格式将它们上传到媒体网站&#xff1f;您的房间里是否有一堆 DVD 光盘&#xff0c;想将它们转换为数字格式以便于播放&…...

分布式锁的概念、应用场景、实现方式和优缺点对比

一&#xff1a;什么是分布式锁 分布式锁是一种用于协调分布式系统中多个节点对共享资源的访问的机制。在分布式系统中&#xff0c;由于多个节点的并发执行&#xff0c;可能会导致对共享资源的竞争&#xff0c;而分布式锁的目的就是确保在任何时刻&#xff0c;只有一个节点能够持…...

Linux:常见指令

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》 文章目录 前言一、常见指令ls指令pwd指令cd指令touch指令mkdir指令rmdir指令rm指令man指令cp指令mv指令cat指令tac指令echo指令more指令less指令head指令tail指令date显示Cal指令find指令gr…...

大数据基础设施搭建 - ZooKeeper

文章目录 一、上传压缩包二、解压压缩包三、本机安装3.1 修改配置文件3.1.1 创建ZooKeeper数据存储目录3.1.2 修改配置文件名3.1.2 修改配置文件内容 3.3 启动/停止服务端3.4 测试&#xff08;1&#xff09;启动客户端&#xff08;2&#xff09;测试客户端操作 四、集群安装4.1…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...