OpenHarmony的未来和如何做好一个开源社区
今天要分享的文章,可能更多只是作为一种观点。主要包括2个内容。OpenHarmony的未来和如何做好一个开源社区,好的,接下来开始今天的内容。
你对OpenHarmony的未来如何看待?
OpenHarmony的未来看起来非常光明,因为它具备以下优势:
- 开放性:OpenHarmony是一款全栈开源的操作系统,任何人都可以使用它并为它贡献代码。这种开放性可以吸引更多的开发者参与到OpenHarmony的开发和推广中来,从而推动它的发展。
- 全场景支持:OpenHarmony被设计为一款面向全场景的操作系统,他的目标是能够实现从智能穿戴设备到智能家居等多个场景的无缝连接,为用户提供全新的智能生活体验,更加贴合用户需求的解决方案。
- 安全性:OpenHarmony在设计之初就考虑了安全问题,它采用了多层安全体系结构来保护用户的隐私和数据安全。这种安全性可以吸引更多用户使用OpenHarmony,并促进它在市场上的推广和发展。
综上所述,OpenHarmony是一款具备开放性、全场景支持和安全性的操作系统,它的未来非常有潜力。随着智能设备市场的不断扩大,OpenHarmony有望成为一个受欢迎的操作系统,为用户提供更加智能化、便捷和安全的生活体验。这里面就需要大家一起来共建,那么就有下面的问题了。如何做好一个开源社区。
如何做好一个开源社区?

开源社区是一个由志愿者、开发者和用户组成的社区,共同参与开发和维护开源软件项目。要做好一个开源社区,在我看来,需要以下6个步骤:
- 设定愿景和价值观:一个开源社区需要有一个清晰的愿景和价值观,以鼓励成员的参与和激励成员为实现共同目标做出贡献。
- 提供友好的环境:提供友好的环境可以吸引更多的人加入社区,并鼓励他们积极参与。友好的环境包括友好的交流渠道、详细的文档和开发工具、易于使用的用户界面等。
- 开放的协作方式:开放的协作方式可以帮助社区成员更好地协作和交流,这有助于推进项目的进展和提高生产效率。例如,采用在线协作工具、代码库和邮件列表等,使成员可以方便地协作。
- 鼓励贡献:鼓励成员进行贡献可以增强社区的活力。例如,可以为贡献者提供荣誉证书、社区活动邀请或其他奖励等。
- 维护秩序:开源社区需要一套清晰的规则和准则来维护秩序,以防止成员之间出现争端和不良行为。这些规则应该公开透明,便于所有成员遵守。
- 持续的改进:社区的发展需要不断的改进和创新。因此,需要对社区的组织和管理进行持续的改进,并根据成员的反馈和建议进行调整。
通过上述步骤的实施,可以做好一个成功的开源社区,吸引更多的人参与进来,推动项目的进展,共同实现开源项目的目标。
相关文章:
OpenHarmony的未来和如何做好一个开源社区
今天要分享的文章,可能更多只是作为一种观点。主要包括2个内容。OpenHarmony的未来和如何做好一个开源社区,好的,接下来开始今天的内容。 你对OpenHarmony的未来如何看待? OpenHarmony的未来看起来非常光明,因为它具…...
二叉搜索树实现
树的导览 树由节点(nodes)和边(edges)构成,如下图所示。整棵树有一个最上端节点,称为根节点(root)。每个节点可以拥有具有方向的边(directed edges)…...
解决Spring Data Jpa 实体类自动创建数据库表失败问题
先说一下我遇到的这个问题,首先我是通过maven创建了一个spring boot的工程,引入了Spring data jpa,结果实体类创建好之后,运行工程却没有在数据库中自动创建数据表。 找了半天发现是一个配置的问题! hibernate.ddl-auto节点的配…...
Elasticsearch:创建一个简单的 “你的意思是?” 推荐搜索
“你的意思是” 是搜索引擎中一个非常重要的功能,因为它们通过显示建议的术语来帮助用户,以便他可以进行更准确的搜索。比如,在百度中,我们进行搜索时,它通常会显示一些更为常用推荐的搜索选项来供我们选择:…...
urllib之ProxyHandler代理以及CookieJar的cookie内存传递和本地保存与读取的使用详解
处理更高级操作时(Cookies处理,代理设置),需要一个强大的工具Handler,可以理解成各种处理器,有处理登录认证的、有处理Cookies的、有处理代理设置的。利用这些几乎可以做到HTTP请求中所有事情。当中urllib.request模块里的 BaseHa…...
华为造车锚定智选模式, 起点赢家赛力斯驶入新能源主航道
文|螳螂观察 作者| 易不二 近日,赛力斯与华为的一纸联合业务深化合作协议,给了频频猜测赛力斯与华为之间关系的舆论一个明确的定调:智选模式已成为华为与赛力斯共同推动中国新能源汽车产业高质量发展的坚定选择。 自华为智能汽车业务开启零…...
[oeasy]python0096_游戏娱乐行业_雅达利_米洛华_四人赛马_影视结合游戏
游戏娱乐行业 回忆上次内容 游戏机行业从无到有 雅达利 公司 一枝独秀并且带领 行业 发展起来 雅达利公司 优秀员工 乔布斯 在 朋友 帮助下完成了《pong》 Jobs 黑了 Woz 一部分收入 然后拿着钱 去印度禅修了 游戏行业 会如何继续 呢??🤔 灵修 乔布…...
使用python测试框架完成自动化测试并生成报告-实例练习
练习一: 使用unittest 完成自动化测试并使用HttpTestRunner生成报告 1、写个简单的计算器功能,大小写转换功能,随机生成字符串功能 2、编写测试用例,不同的数据(你能想到的所有测试用例),并进行断言。除0的…...
JavaWeb 实战 01 - 计算机是如何工作的
计算机是如何工作的1. 计算机发展史2. 计算机的基本组成2.1 冯诺依曼体系结构2.2 CPU的内部结构2.3 指令2.3.1 指令表2.3.1.1 寄存器2.3.2 CPU的工作流程2.4 小结3. 操作系统3.1 核心功能3.2 操作系统的软硬件结构3.3 什么是进程 / 任务3.4 进程管理3.4.1 管理3.4.2 PCB : 进程…...
线性代数学习-1
线性代数学习-1行图像和列图像行图像列图像总结本文转载于https://herosunly.blog.csdn.net/article/details/88698381 该文章本人认为十分有用,便自己敲一遍笔记加固印象原文链接 原文这个笔记感觉比我老师讲的更加透彻,清晰。很好的展示了线性代数的原…...
人工智能写的十段代码,九个通过测试了
“抢走你工作的不会是 AI ,而是先掌握 AI 能力的人” 编程测试 1. 我想用golang实现二叉树前序,请你帮我写一下代码。 // 定义二叉树节点 type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode }// 前序遍历 func PreOrderTraversal(root *Tre…...
巴塞尔问题数值逼近方法
巴塞尔问题:计算所有平方数的导数和 ∑n1∞1n2limn→∞(112122⋯1n2)\sum_{n1}^{\infty} \frac{1}{n^{2}}\lim _{n \rightarrow\infty}\left(\frac{1}{1^{2}}\frac{1}{2^{2}}\cdots\frac{1}{n^{2}}\right)n1∑∞n21n→∞lim(121221⋯n21) 其理论解为…...
【深度学习环境】Docker
1. Docker 相关安装配置 1.1 docker 安装 参考:https://www.runoob.com/docker/ubuntu-docker-install.html 1.2 nvidia-docker 安装 参考:https://zhuanlan.zhihu.com/p/37519492 1.3 代理加速 参考:https://yeasy.gitbook.io/docker_…...
基于vscode开发vue项目的详细步骤教程 2 第三方图标库FontAwesome
1、Vue下载安装步骤的详细教程(亲测有效) 1_水w的博客-CSDN博客 2、Vue下载安装步骤的详细教程(亲测有效) 2 安装与创建默认项目_水w的博客-CSDN博客 3、基于vscode开发vue项目的详细步骤教程_水w的博客-CSDN博客 目录 六、第三方图标库FontAwesome 1 安装FontAwesome 解决报…...
今天面了个腾讯拿25K出来的软件测试工程师,让我见识到了真正的天花板...
今天上班开早会就是新人见面仪式,听说来了个很厉害的大佬,年纪还不大,是上家公司离职过来的,薪资已经达到中高等水平,很多人都好奇不已,能拿到这个薪资应该人不简单,果然,自我介绍的…...
OSG三维渲染引擎编程学习之六十九:“第六章:OSG场景工作机制” 之 “6.9 OSG数据变量”
目录 第六章 OSG场景工作机制 6.9 OSG数据变量 第六章 OSG场景工作机制 作为一个成熟的三维渲染引擎,需要提供快速获取场景数据、节点等信息,具备自定义数据或动画更新接口,能接收应用程序或窗口等各类消息。OSG三维渲染引擎能较好地完成上述工作,OSG是采用什么方式或工作…...
Tektronix泰克TDP3500差分探头3.5GHz
附加功能: 带宽:3.5 GHz 差分输入电容:≤0.3 pF 差分输入电阻:100 kΩ DC pk 交流输入电压:15 V >60 dB 在 1 MHz 和 >25 dB 在 1 GHz CMRR 出色的共模抑制——减少较高共模环境中的测量误差 低电容和电阻负载…...
轻松实现内网穿透:实现远程访问你的私人网络
导语:内网穿透是什么?为什么我们需要它?今天我们将介绍这个令人惊叹的技术,让你实现远程访问你的私人网络。 使用内网穿透,轻松实现外网访问本地部署的网站 第一部分:什么是内网穿透? 通俗解释…...
MySQL长字符截断
MySQL超长字符截断又名"SQL-Column-Truncation",是安全研究者Stefan Esser在2008 年8月提出的。 在MySQL中的一个设置里有一个sql_mode选项,当sql_mode设置为default时,即没有开启STRICT_ALL_TABLES选项时(MySQLsql_mo…...
python计算量比指标
百度百科是这么写的:量比定义:股市开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比。计算公式:量比(现成交总手数 / 现累计开市时间(分) )/ 过去5日平均每分钟成交量。这里公式没有问题,但是…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
