当前位置: 首页 > news >正文

猫12分类:使用yolov5训练检测模型

前言:

      在使用yolov5之前,尝试过到百度飞桨平台(小白不建议)、AutoDL平台(这个比较友好,经济实惠)训练模型。但还是没有本地训练模型来的舒服。因此远程了一台学校电脑来搭建自己的检测模型。配置嘛!勉强过的去。毕竟训练的模型也不是很大。本来想着也想搞一些nb轰轰的模型,但想想还是算了,一是经济(云平台,只想白嫖),二是时间(准备那些数据集就非常浪费时间,自己昨天制作的那150关于猫的label就标了三四个小时,还标错了,导致训练时全部返工,真的烦),三是学校电脑配置还是不咋行,训练完估计模型精度也就那样子。想想嘛!还是根据喜好训练一个模型吧!

使用yolov5进行本地部署的原因:

推荐使用YOLOv5训练检测模型有以下几个原因:
1. 高性能:YOLOv5在检测任务上具有出色的性能。相比于之前的版本,YOLOv5采用了更深的网络结构和更多的特征层,可以提供更准确的检测结果,并且在速度上也有所提升。
2. 简单易用:YOLOv5提供了一个简单的训练和测试框架,使得用户可以轻松地进行模型的训练和评估。用户只需要准备好训练数据,并进行简单的配置,就可以开始训练模型。
3. 多平台支持:YOLOv5支持多种平台,包括CPU、GPU和TPU等。这使得用户可以根据自己的需求选择合适的硬件平台来进行训练和推理。
4. 开源社区支持:YOLOv5是一个开源项目,有一个庞大的开源社区支持。这意味着用户可以从社区中获取到丰富的资源、教程和解决方案,以帮助他们更好地使用和优化YOLOv5模型。
综上所述,YOLOv5是一个性能优秀、简单易用、多平台支持且有开源社区支持的检测模型,因此推荐使用它进行训练和应用。

数据预处理:

xml文件转txt文件

在使用yolov5训练模型之前,需要将label目录下的xml文件转为txt文件。

转换代码如下

import os
import xml.etree.ElementTree as ETimport os
import xml.etree.ElementTree as ETdef convert_xml_to_yolov5_label(xml_file, txt_file):tree = ET.parse(xml_file)root = tree.getroot()with open(txt_file, 'w') as f:for obj in root.findall('outputs/object/item'):class_name = obj.find('name').textbbox = obj.find('bndbox')x_min = float(bbox.find('xmin').text)y_min = float(bbox.find('ymin').text)x_max = float(bbox.find('xmax').text)y_max = float(bbox.find('ymax').text)width = x_max - x_minheight = y_max - y_minx_center = x_min + width / 2y_center = y_min + height / 2# 将坐标归一化到0-1之间width /= float(root.find('size/width').text)height /= float(root.find('size/height').text)x_center /= float(root.find('size/width').text)y_center /= float(root.find('size/height').text)f.write(f"{class_name} {x_center} {y_center} {width} {height}\n")def batch_convert_xml_to_yolov5_label(xml_folder, txt_folder):if not os.path.exists(txt_folder):os.makedirs(txt_folder)for file in os.listdir(xml_folder):if file.endswith('.xml'):xml_file = os.path.join(xml_folder, file)txt_file = os.path.join(txt_folder, file.replace('.xml', '.txt'))convert_xml_to_yolov5_label(xml_file, txt_file)# 示例用法
xml_folder = r'C:\Users\1\Desktop\images\labelsxml'
txt_folder = r'C:\Users\1\Desktop\images\labels'
batch_convert_xml_to_yolov5_label(xml_folder, txt_folder)

划分训练集和验证集

因为数据集比较少,所以验证集部分直接使用训练集来做验证。

数据目录结构如下:

编写data目录yaml文件(索引文件,加载数据的访问路径以及检测类别)

# 数据集根路径
path: C:\Users\1\Desktop\catmaoxunlian\catdata    
#训练集
train: images/train
#验证集
val: images/valnc: 1
# Classes
names: ['cat']

示例编辑如下

编写models目录下的yum文件

模型训练

找到yolov5目录下的train.py,加载数据集yaml文件和models云文件,以及预训练模型,

详细教程请找我的另一篇博客(懒得再写一遍)基于yolov5的NEU-NET产品缺陷目标检测_map50_挽风起苍岚的博客-CSDN博客

基本上检测出来了,不过精度不是很高,精度不高的原因,主要时数据集太少(猫的类别很多),训练次数不是很够。

模型推理

python detect.py --weights yolov5s.pt --source 0                               # webcamimg.jpg                         # imagevid.mp4                         # videoscreen                          # screenshotpath/                           # directorylist.txt                        # list of imageslist.streams                    # list of streams'path/*.jpg'                    # glob'https://youtu.be/LNwODJXcvt4'  # YouTube'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

测试图片如下:

模型推理后的结果

额,模型精度有待加强,不过先这样吧!勉勉强强,哈哈。。。

后续内容

训练一个猫12分类的模型;

部署到云平台,开放一个接口调用模型API;

然后结合猫目标检测模型制作一个C#小程序。

增加一个GPT功能等等吧!

....

相关文章:

猫12分类:使用yolov5训练检测模型

前言: 在使用yolov5之前,尝试过到百度飞桨平台(小白不建议)、AutoDL平台(这个比较友好,经济实惠)训练模型。但还是没有本地训练模型来的舒服。因此远程了一台学校电脑来搭建自己的检测模型。配置…...

Kubernetes Dashboard部署ImagePullBackOff问题处理

通常,出现ImagePullBackOff问题是由于Kubernetes集群无法拉取所需的镜像导致的。解决这个问题的方法通常包括以下步骤: 1. 检查Pod的描述信息: kubectl describe pod/[pod名称] --namespacekubernetes-dashboard 查看Events部分是否有关于…...

十四、Docker的基本操作

目录 (一)镜像命令 一、拉取Nginx 二、查看镜像 三、导出文件 四、删除镜像 五、加载镜像 (二)容器命令 一、例子:运行一个nginx容器 1、输入运行命令 2、使用命令查看宿主机ip 3、在外部浏览器访问 4、查看…...

C#,数值计算——插值和外推,分段线性插值(Linear_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 分段线性插值 /// Piecewise linear interpolation object. /// Construct with x and y vectors, then call interp for interpolated values. /// </summary> …...

详细讲解什么是单例模式

当谈到单例模式时&#xff0c;我们指的是一种设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。这种模式在软件开发中很常见&#xff0c;特别是需要控制资源访问、配置管理、日志记录器等情况下。 让我们用一个简单的例子来解释单…...

在springBoot中同时使用mysql和MongoDB

在SpringBoot中非关系向数据库MongoDB和关系型数据库MySQL都可通过引入相关依赖并按照指定配置单独集成; mysql引入依赖: compile "org.springframework.boot:spring-boot-starter-web:1.5.18.RELEASE"compile "org.springframework.boot:spring-boot-start…...

2023.11.19 hadoop之MapReduce

目录 1.简介 2.分布式计算框架-Map Reduce 3.mapreduce的步骤 4.MapReduce底层原理 map阶段 shuffle阶段 reduce阶段 1.简介 Mapreduce是一个分布式运算程序的编程框架&#xff0c;是用户开发“基于hadoop的数据分析应用”的核心框架&#xff1b; Mapreduce核心功能是…...

力扣第841题 钥匙和房间 C++ DFS BFS 附Java代码

题目 841. 钥匙和房间 中等 相关标签 深度优先搜索 广度优先搜索 图 有 n 个房间&#xff0c;房间按从 0 到 n - 1 编号。最初&#xff0c;除 0 号房间外的其余所有房间都被锁住。你的目标是进入所有的房间。然而&#xff0c;你不能在没有获得钥匙的时候进入锁住的房间…...

React 中 react-i18next 切换语言( 项目国际化 )

背景 平时中会遇到需求&#xff0c;就是切换语言&#xff0c;语种等。其实总的来说都是用i18n来实现的 思路 首先在项目中安装i18n插件&#xff0c;然后将插件引入到项目&#xff0c;然后配置语言包&#xff08;语言包需要你自己来进行配置&#xff0c;自己编写语言包&#xff…...

antd design 5 版本 文件上传

<UploadcustomRequest{customRequest}accept".csv" showUploadList{false}><Button icon{<UploadOutlined />}>上传 CSV 文件</Button></Upload> accept 代表限制的上传类型 也可设置 .excel // 文件上传 ( CSV ) const customReques…...

【如何学习Python自动化测试】—— 浏览器操作

4 、 浏览器操作 4.1 浏览器最大化 Webdriver 打开浏览器后&#xff0c;默认不是最大化&#xff0c;如果需要界面最大化&#xff0c;需要通过 maximize_window()方法来实现&#xff0c;代码如下&#xff1a; maximize_window()方法是Selenium WebDriver提供的一个方法&#xf…...

Python编程技巧 – 使用字典

Python编程技巧 – 使用字典 Python Programming Skills – Using Dictionary Dictionary, 即字典&#xff0c;这是Python语言的一种重要的数据结构&#xff1b;Python字典是以键&#xff08;key&#xff09;值(value)对为元素&#xff0c;来存储数据的集合。 前文提到Python列…...

el-tree 与table表格联动

html部分 <div class"org-left"><el-input v-model"filterText" placeholder"" size"default" /><el-tree ref"treeRef" class"filter-tree" :data"treeData" :props"defaultProp…...

Leetcode刷题详解——删除并获得点数

1. 题目链接&#xff1a;740. 删除并获得点数 2. 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;你可以对它进行一些操作。 每次操作中&#xff0c;选择任意一个 nums[i] &#xff0c;删除它并获得 nums[i] 的点数。之后&#xff0c;你必须删除 所有 等于 nums[i] …...

HTTP四种请求方式,状态码,请求和响应报文

1.get请求 一般用于获取数据请求参数在URL后面请求参数的大小有限制 2.post请求 一般用于修改数据提交的数据在请求体中提交数据的大小没有限制 3.put请求 一般用于添加数据 4.delete请求 一般用于删除数据 5.一次完整的http请求过程 域名解析&#xff1a;使用DNS协议…...

Python - Wave2lip 环境配置与 Wave2lip x GFP-GAN 实战 [超详细!]

一.引言 前面介绍了 GFP-GAN 的原理与应用&#xff0c;其用于优化图像画质。本文关注另外一个相关的项目 Wave2lip&#xff0c;其可以通过人物视频与自定义音频进行适配&#xff0c;改变视频中人物的嘴型与音频对应。 二.Wave2Lip 简介 Wave2lip 研究 lip-syncing 以达到视频…...

2311rust,1.31版本更新

1.31.0稳定版 Rust1.31可能是最激动人心的版本! 使用Cargo创建一个新项目: cargo new foo以下是Cargo.toml的内容: [package] name "foo" version "0.1.0" authors ["名字"] edition "2018" //版本. [dependencies]在[package]…...

文心一言-情感关怀之旅

如何让LLM更有温度。 应用介绍...

下厨房网站月度最佳栏目菜谱数据获取及分析PLus

目录 概要 源数据获取 写Python代码爬取数据 Scala介绍与数据处理 1.Sacla介绍 2.Scala数据处理流程 数据可视化 最终大屏效果 小结 概要 本文的主题是获取下厨房网站月度最佳栏目近十年数据&#xff0c;最终进行数据清洗、处理后生成所需的数据库表&#xff0c;最终进…...

buildadmin+tp8表格操作(5)自定义组装搜索的查询

有时候我们会自定义组装一些数据&#xff0c;发送给后端&#xff0c;让后端来进行筛选&#xff0c;这里有一个示例 const onComSearchIdEq () > {// 展开公共搜索baTable.table.showComSearch true/*** 公共搜索表单赋值* 范围搜索有两个输入框&#xff0c;输入框绑定变量…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...