当前位置: 首页 > news >正文

2023.11.18 每日一题(AI自生成应用)【C++】【Python】【Java】【Go】 动态时间序列分析

目录

一、编程挑战:动态时间序列分析

实际应用:

实现提示:

二、实现

1. C++

2. Python

3. JAVA

4. Go


一、编程挑战:动态时间序列分析

问题描述
假设你是一名软件工程师,需要开发一个应用来分析和预测股市的动态变化。你的任务是实现一个算法,能够接收一个股票价格的时间序列,并预测接下来的价格走势。

输出
一个整数,表示基于当前数据,预测的下一个交易日的股票收盘价。

算法要求

  • 使用滑动窗口方法来分析股票价格的趋势。
  • 实现一个简单的线性回归模型来预测下一个价格。
  • 你可以选择使用任何编程语言来实现这个算法。

示例

输入: [100, 101, 102, 103, 104]
预测输出: 105

实际应用:

这种类型的算法在金融技术领域非常有用,尤其是在股票市场分析和预测中。通过分析历史价格数据,算法可以帮助投资者做出更明智的投资决策。

实现提示:

  • 使用滑动窗口来计算过去几天的平均价格,并用这个平均价格来预测未来的价格。
  • 实现线性回归模型时,可以考虑使用最小二乘法来找到最佳拟合线。

二、实现

1. C++

#include <iostream>
#include <vector>using namespace std;// 函数:计算线性回归并预测下一个值
int predictNextPrice(const vector<int>& prices) {int n = prices.size();if (n <= 1) return -1;  // 如果数据不足,返回-1double sumX = 0, sumY = 0, sumX2 = 0, sumXY = 0;for (int i = 0; i < n; ++i) {sumX += i;sumY += prices[i];sumX2 += i * i;sumXY += i * prices[i];}double xMean = sumX / n;double yMean = sumY / n;double denominator = n * sumX2 - sumX * sumX;if (denominator == 0) return -1;  // 防止除以0double a = (n * sumXY - sumX * sumY) / denominator;double b = (sumY - a * sumX) / n;// 使用得到的线性模型来预测下一个价格return static_cast<int>(a * n + b);
}int main() {vector<int> prices = {100, 101, 102, 103, 104};  // 示例数据int predictedPrice = predictNextPrice(prices);cout << "预测的下一个价格是: " << predictedPrice << endl;return 0;
}

        这段代码首先计算了时间序列中的平均值和股票价格的平均值,然后用最小二乘法求解线性回归方程的系数。最后,它使用这个线性方程来预测下一个价格。这种简单的线性回归模型在真实世界的股市预测中可能过于简化,但它提供了一个关于如何使用统计方法来分析和预测数据的基本框架。

2. Python

import numpy as npdef predict_next_price(prices):n = len(prices)if n <= 1:return -1  # 如果数据不足,返回-1# 创建时间序列(0, 1, 2, ..., n-1)X = np.arange(n)Y = np.array(prices)# 计算X和Y的均值X_mean = np.mean(X)Y_mean = np.mean(Y)# 计算系数num = np.sum((X - X_mean) * (Y - Y_mean))den = np.sum((X - X_mean) ** 2)if den == 0:return -1  # 防止除以0a = num / denb = Y_mean - a * X_mean# 使用得到的线性模型预测下一个价格return a * n + b# 示例数据
prices = [100, 101, 102, 103, 104]
predicted_price = predict_next_price(prices)
print("预测的下一个价格是:", predicted_price)

3. JAVA

public class StockPricePredictor {public static void main(String[] args) {int[] prices = {100, 101, 102, 103, 104}; // 示例数据int predictedPrice = predictNextPrice(prices);System.out.println("预测的下一个价格是: " + predictedPrice);}private static int predictNextPrice(int[] prices) {int n = prices.length;if (n <= 1) {return -1;  // 如果数据不足,返回-1}double sumX = 0, sumY = 0, sumX2 = 0, sumXY = 0;for (int i = 0; i < n; i++) {sumX += i;sumY += prices[i];sumX2 += i * i;sumXY += i * prices[i];}double xMean = sumX / n;double yMean = sumY / n;double denominator = n * sumX2 - sumX * sumX;if (denominator == 0) {return -1;  // 防止除以0}double a = (n * sumXY - sumX * sumY) / denominator;double b = (sumY - a * sumX) / n;// 使用得到的线性模型来预测下一个价格return (int) (a * n + b);}
}

4. Go

package mainimport ("fmt"
)func predictNextPrice(prices []int) int {n := len(prices)if n <= 1 {return -1 // 如果数据不足,返回-1}sumX, sumY, sumX2, sumXY := 0.0, 0.0, 0.0, 0.0for i := 0; i < n; i++ {sumX += float64(i)sumY += float64(prices[i])sumX2 += float64(i * i)sumXY += float64(i) * float64(prices[i])}xMean := sumX / float64(n)yMean := sumY / float64(n)denominator := float64(n)*sumX2 - sumX*sumXif denominator == 0 {return -1 // 防止除以0}a := (float64(n)*sumXY - sumX*sumY) / denominatorb := (sumY - a*sumX) / float64(n)// 使用得到的线性模型来预测下一个价格return int(a*float64(n) + b)
}func main() {prices := []int{100, 101, 102, 103, 104} // 示例数据predictedPrice := predictNextPrice(prices)fmt.Printf("预测的下一个价格是: %d\n", predictedPrice)
}

相关文章:

2023.11.18 每日一题(AI自生成应用)【C++】【Python】【Java】【Go】 动态时间序列分析

目录 一、编程挑战&#xff1a;动态时间序列分析 实际应用&#xff1a; 实现提示&#xff1a; 二、实现 1. C 2. Python 3. JAVA 4. Go 一、编程挑战&#xff1a;动态时间序列分析 问题描述&#xff1a; 假设你是一名软件工程师&#xff0c;需要开发一个应用来分析和预…...

uniapp相关记录

一、自定义我的物品组件 my_goods.vue <template><view class"goods-item"><!-- 左侧 --><view class"goods-item-left"><radio :checked"goods.goods_state" color"#c00000" v-if"showRadio" …...

优质猫罐头有哪些品牌?分享5款宠物店自用值得推荐的猫罐头!

不知不觉已经开宠物店7年啦&#xff0c;店里的猫猫大大小小也算是尝试过很多品牌的猫罐头了。优质猫罐头有哪些品牌&#xff1f;在猫罐头的选购上一开始我也是踩了很多坑&#xff0c;各种踩雷。我深知猫罐头的各种门道&#xff0c;新手一不小心就会着道了。 优质猫罐头有哪些品…...

HTML新手入门笔记整理:HTML基本标签

结构标签 <html> </html> 告诉浏览器这个页面是从<html> 开始&#xff0c;到 </html>结束 <head> </head> 网页的头部&#xff0c;用于定义一些特殊内容&#xff0c;如页面标题、定时刷新、外部文件等。 <body> </body> …...

Redis高级特性和应用(发布 订阅、Stream)

目录 发布和订阅 操作命令 发布消息 订阅消息 查询订阅情况 查看活跃的频道 查看频道订阅数 使用场景和缺点 Redis Stream Stream总述 常用操作命令 生产端 消费端 单消费者 消费组 创建消费组 消息消费 在Redis中实现消息队列 基于pub/sub 基于Stream Re…...

RoCE、IB和TCP等网络的基本知识及差异对比

目前有三种RDMA网络&#xff0c;分别是Infiniband、RoCE(RDMA over Converged Ethernet)、iWARP。 其中&#xff0c;Infiniband是一种专为RDMA设计的网络&#xff0c;从硬件级别保证可靠传输 &#xff0c;技术先进&#xff0c;但是成本高昂。 而RoCE 和 iWARP都是基于以太网的…...

c语言-操作符详解(含优先级与结合性)

文章目录 了解什么是操作数、操作符操作数&#xff1a;操作符 操作符详解&#xff1a;1.算术操作符&#xff1a; 、- 、* 、/ 、%2.移位操作符: << >>3.位操作符: & | ^4. 赋值操作符: 、 、 - 、 * 、 / 、% 、<< 、>> 、& 、| 、^5. 单⽬操…...

ubuntu安装nvm

需求 在 virtualbox 虚拟机上运行的 ubuntu &#xff08;22.04.3&#xff09;里安装 nvm &#xff08;Node Version Manager&#xff09; 简述 官网文档 &#xff08;github地址&#xff09;上有提到两种安装方式&#xff0c;一种是直接 curl | wget 命令安装&#xff0c;一…...

opengl制作天空盒

首先创建顶点数组 unsigned int m_uiVaoBufferID; glGenVertexArrays(1, &m_uiVaoBufferID); 然后创建顶点缓冲区 float skyboxVertices[] {// positions-1.0f, 1.0f, -1.0f,-1.0f, -1.0f, -1.0f,1.0f, -1.0f, -1.0f,1.0f, -1.0f, -1.0f,1.0f, 1.0f, -1.0f,-1.0f, 1.…...

单片机和FreeRTOS上跑机器人ROS的应用

机器人的应用越来越广泛了&#xff0c;大家熟知的稚晖君直接创业搞机器人&#xff0c;可想而至&#xff0c;接下来的十年&#xff0c;机器人绝对是热门的行业。 目前市面上很多机器人都是基于一套叫做ROS的系统开发的&#xff0c;今天就给大家分享一个跑在MCU上&#xff0c;基…...

Spring Cloud学习(十一)【深入Elasticsearch 分布式搜索引擎03】

文章目录 数据聚合聚合的种类DSL实现聚合RestAPI实现聚合 自动补全拼音分词器自定义分词器自动补全查询completion suggester查询RestAPI实现自动补全 数据同步数据同步思路分析实现elasticsearch与数据库数据同步 集群搭建ES集群创建es集群集群状态监控创建索引库1&#xff09…...

【gitlab初始密码登录失败】

gitlab初始密码登录失败 修改密码 修改密码 [rootlocalhost ~]# gitlab-rake "gitlab:password:reset[root]" Enter password: Confirm password: Password successfully updated for user with username root. # 再重新配置gitlab [rootlocalhost ~]# gitlab-ctl…...

2017年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

文章目录 2017 级考研管理类联考数学真题解析一、问题求解&#xff08;本大题共 5 小题&#xff0c;每小题 3 分&#xff0c;共 45 分&#xff09;下列每题给出 5 个选项中&#xff0c;只有一个是符合要求的&#xff0c;请在答题卡上将所选择的字母涂黑。真题&#xff08;2017-…...

2、基础入门——web应用架构搭建漏洞HTTP数据包代理服务器

Web应用环境架构类 开发语言&#xff1a;php、java、python、ASP、ASPX等程序源码&#xff1a;用的人多了&#xff0c;就成CMS了。中间件容器&#xff1a;IIS、Apache、Nginx、Tomcat、Weblogic、Jboos、glasshfish等数据库类型&#xff1a;Access、Mysql、Mssql、Oracle、Red…...

【精选】OpenCV多视角摄像头融合的目标检测系统:全面部署指南&源代码

1.研究背景与意义 随着计算机视觉和图像处理技术的快速发展&#xff0c;人们对于多摄像头拼接行人检测系统的需求日益增加。这种系统可以利用多个摄像头的视角&#xff0c;实时监测和跟踪行人的活动&#xff0c;为公共安全、交通管理、视频监控等领域提供重要的支持和帮助。 …...

力扣算法练习BM45—滑块窗口的最大值

题目 给定一个长度为 n 的数组 num 和滑动窗口的大小 size &#xff0c;找出所有滑动窗口里数值的最大值。 例如&#xff0c;如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3&#xff0c;那么一共存在6个滑动窗口&#xff0c;他们的最大值分别为{4,4,6,6,6,5}&#xff1b; 针…...

最小二乘估计及与极大似然估计的关系

最小二乘估计&#xff08;Least Squares Estimation&#xff09;和极大似然估计&#xff08;Maximum Likelihood Estimation&#xff09;是统计学中常用的参数估计方法&#xff0c;它们在某些情况下是等价的&#xff0c;但在一般情况下并不总是相同的。 最小二乘估计&#xff…...

02房价预测

目录 代码 评分算法&#xff1a; 代码 import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression# 指定版本才有数据集 # C:\Users\14817\PycharmProjects\pythonProject1\venv\Scripts\activate.bat # pip install scikit-le…...

【Springboot】pom.xml中的<build>标签详解

默认值及其标签解释 <build><!-- 指定最终构建产物的名称, 例如生成的 JAR 文件的名称 --><finalName>${artifactId}-${version}</finalName><!-- 指定源代码文件的目录路径 --><sourceDirectory>src/main/java</sourceDirectory>&l…...

智能驾驶产品开发中如何贯彻“正向开发”理念

摘要&#xff1a; 基于演绎法的正向开发理念&#xff0c;能够让智能驾驶产品在充分满足用户需求&#xff0c;保证产品质量的同时&#xff0c;确保开发目标合理且得到落实。 前段时间&#xff0c;微博CEO吐槽理想L9智能驾驶“行驶轨迹不居中”&#xff0c;在网上引发了热烈讨论…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...