当前位置: 首页 > news >正文

Jina AI 的 8K 向量模型上线 AWS Marketplace,支持本地部署!

a618e97cb0f02b364f87992b06b5e5b1.png

在当前多模态 AI 和大模型技术风头正劲的背景下,Jina AI 始终领跑于创新前沿,技术领先。2023 年 10 月 30 日,Jina AI 隆重推出 jina-embeddings-v2,这是全球首款支持 8192 输入长度的开源向量大模型,其性能媲美 OpenAI 的闭源 text-embedding-ada002。如今,jina-embeddings-v2 正式登陆 AWS Marketplace,为中大型企业提供了私有化部署向量模型的理想解决方案。

作为亚马逊云科技创业加速器的一员,Jina AI 与 AWS 的密切合作体现了双方在推动 AI 技术发展上的共同承诺。这次合作不仅在技术层面上实现了联合,更是对未来大模型应用落地的深入探索。

Jina AI 的创始人兼 CEO 肖涵博士,对此表示:“jina-embeddings-v2 上线 AWS Marketplace,是对私有化 AI 解决方案行业标准的一次重大推进。”

e177642d79fa9570bc19629a1769e237.png 现在,企业用户可以在 AWS Marketplace 上搜索 jina-embeddings-v2-base/small,并将它们直接部署到自己的 AWS 账户中。

AWS SageMaker 的无缝集成

在 Jina AI,我们不仅追求技术创新,更重视其在 实际应用中的高效实施。因此我们将 jina-embeddings-v2 与 AWS SageMaker 进行了无缝集成,为企业用户提供了一种高效便捷的解决方案。企业用户现在可以轻松地将 jina-embeddings-v2 模型直接部署为 SageMaker 终端节点,迅速应用到实际业务中,无需担忧技术复杂性和部署挑战。

在商业应用方面,我们特别注重 经济性和隐私保护。我们的英语 Base 模型和 Small 模型无需额外许可费,客户仅需承担 AWS 实例相关费用。这不仅确保了在 Virtual Private Cloud(VPC)内的数据隐私和安全,同时也提供了成本效益极高的解决方案。

此外,我们为不同业务场景提供多元化的选择。0.27 GB 的 Base 模型和 0.07 GB 的 Small 模型,能够服务从深度数据分析到轻量级应用的多样化需求。其中,Base 模型以其全面的语义表示能力,非常适合企业级搜索和内容推荐。而专门针对移动和边缘设备优化的 Small 模型,则突出了在速度和效率上的优势。

jina-embeddings-v2 的独特优势

  1. RAG 应用的理想选择:我们深知长文本处理的复杂性,特别是在需要广泛信息搜集和深度理解的场景中。jina-embeddings-v2 支持不同语义粒度的完整文本表示,使其成为优化 RAG 应用中处理长篇文本的理想选择。它不仅增强了文本的语义理解能力,还提供了更大的灵活性和准确性。

  2. 全球首个支持 8k 输入长度的开源模型:jina-embeddings-v2 作为全球首个支持高达 8k 输入长度的开源模型,它在多方面比肩 OpenAI 的闭源模型 text-embedding-ada-002。我们的开源模型不仅具有强大的性能,更重要的是,它为用户提供了根据自己的业务需求进行个性化调整的自由度。

  3. 更小的维度实现高效的表征:在保持与 OpenAI 的 text-embedding-ada-002 模型相当的性能表现的同时,jina-embeddings-v2 的向量维度仅为其一半,大幅降低了存储需求并提高了检索速度。

开始使用 AWS 上的 jina-embeddings-v2

要开始使用 jina-embeddings-v2,请访问 AWS Marketplace 列表并选择最适合您需求的模型。

🔗:https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy

以下示例可帮助您开始使用 jina-embeddings-v2 模型:

  1. Sagemaker 的实时推理:https://github.com/jina-ai/jina-sagemaker/blob/main/notebooks/Real-time%20inference.ipynb

  2. 使用 SageMaker 批量向量化:https://github.com/jina-ai/jina-sagemaker/blob/main/notebooks/Batch%20transform.ipynb

即将推出多语言向量模型

Jina AI 正在积极开发多语言向量模型,包括中英双语、德英双语的向量模型。供企业客户在各种云服务提供商(CSP)上进行私有化部署,为全球客户提供更加全面和灵活的 AI 解决方案。随着这些模型的推出,不仅将跨越语言障碍,更将为企业解锁全球机遇。

4ab6220a4510690d71a191a094255959.png

相关文章:

Jina AI 的 8K 向量模型上线 AWS Marketplace,支持本地部署!

在当前多模态 AI 和大模型技术风头正劲的背景下,Jina AI 始终领跑于创新前沿,技术领先。2023 年 10 月 30 日,Jina AI 隆重推出 jina-embeddings-v2,这是全球首款支持 8192 输入长度的开源向量大模型,其性能媲美 OpenA…...

ubuntu上查看各个进程的实时CPUMEM占用的办法

top常见参数top界面分析system monitorhtop1、查看htop的使用说明2、显示树状结构3、htop使用好文推荐top top的用法应该是最为普遍的 常见参数 -d 更新频率,top显示的界面几秒钟更新一次 -n 更新的次数,top显示的界面更新多少次之后就自动结束了 当然也可以将top日志通过…...

电大搜题——打开学习之门的最佳选择

在快节奏的现代社会,追求知识和学习成为愈发重要的需求。然而,许多人由于时间和机会的限制,无法实现自己的教育梦想。就在这个时候,安徽开放大学广播电视大学通过推出电大搜题微信公众号,为广大学子提供了一个便捷高效…...

[论文笔记] Scaling Laws for Neural Language Models

概览: 一、总结 计算量、数据集大小、模型参数量大小的幂律 与 训练损失呈现 线性关系。 三个参数同时放大时,如何得到最佳的性能? 更大的模型 需要 更少的样本 就能达到相同的效果。 </...

【每日OJ —— 622. 设计循环队列】

每日OJ —— 622. 设计循环队列 1.题目&#xff1a;622. 设计循环队列2.解法2.1.解法讲解2.1.1.算法讲解2.1.2.代码实现2.1.3.提交通过展示 1.题目&#xff1a;622. 设计循环队列 2.解法 1.本题有很多解法&#xff1a;可以使用数组&#xff0c;单链表&#xff0c;双链表&#x…...

【Vue】生命周期一文详解

目录 一、beforeCreate 下面是一个beforeCreate的简单使用示例&#xff1a; 在控制台输出before create hook。 二、created 下面是一个created的简单使用示例&#xff1a; 在控制台输出created hook。 三、beforeMount 下面是一个beforeMount的简单使用示例&#xff1…...

JVM垃圾回收相关算法

目录 一、前言 二、标记阶段&#xff1a;引用计数算法 三、标记阶段&#xff1a;可达性分析算法 &#xff08;一&#xff09;基本思路 &#xff08;二&#xff09;GC Roots对象 四、对象的finalization机制 五、MAT与JProfiler的GC Roots溯源 六、清除阶段&#xff1a;…...

crontab 无法激活、启动 pyenv failed to activate virtualenv

root crontab 无法激活、启动 pyenv crontab代码 30 1 * * * sh /data/work/roop/sh/startSwapFaceDev.sh > /dev/null 2>&1 sh核心代码 echo "${YELLOW}pyenv activate ${venv} ${NOCOLOR}" eval "$(pyenv init -)" eval "$(pyenv v…...

系列八、key是弱引用,gc垃圾回收时会影响ThreadLocal正常工作吗

一、key是弱引用&#xff0c;gc垃圾回收时会影响ThreadLocal正常工作吗 到这里&#xff0c;有些小伙伴可能有疑问&#xff0c;ThreadLocalMap的key既然是 弱引用&#xff0c;那么GC时会不会贸然地把key回收掉&#xff0c;进而影响ThreadLocal的正常使用呢&#xff1f;答案是不会…...

pytorch中.to(device) 和.cuda()的区别

在PyTorch中&#xff0c;使用GPU加速可以显著提高模型的训练速度。在将数据传递给GPU之前&#xff0c;需要将其转换为GPU可用的格式。 函数原型如下&#xff1a; def cuda(self: T, device: Optional[Union[int, device]] None) -> T:return self._apply(lambda t: t.cuda…...

Mysql 递归查询子类Id的所有父类Id

文章目录 问题描述先看结果表结构展示实现递归查询集合查询结果修复数据 问题描述 最近开发过程中遇到一个问题,每次添加代理关系都要去递归查询一下它在不在这个代理关系树上.很麻烦也很浪费资源.想着把代理关系的父类全部存起来 先看结果 表结构展示 表名(t_agent_user_rela…...

设计模式 之单例模式

单例模式是一种创建型设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供全局访问点&#xff0c;使得该实例可以在程序的任何地方被访问。单例模式经常用于管理共享资源或限制对象创建数量的情况下。 实现一个单例模式需要注意以下几个关键点&#xff1a; 构造…...

ros2不同机器通讯时IP设置

看到这就是不同机器的IP地址&#xff0c;为了避免在路由器为不同的机器使用DHCP分配到上面的地址&#xff0c;可以设置DHCP分配的范围&#xff1a;&#xff08;我的路由器是如下设置的&#xff0c;一般路由器型号都不一样&#xff0c;自己找一下&#xff09; 防火墙设置-----&…...

Nginx模块开发之http过滤器filter

文章目录 什么是过滤模块Nginx相关数据结构介绍ngx_module_t的数据结构ngx_http_module_t数据结构ngx_command_s数据结构 相关宏定义filter&#xff08;过滤器&#xff09;实现Nginx模块开发流程Nginx 模块执行具体实现流程create_loc_confmerge_loc_confpostconfiguration修改…...

26 - 原型模式与享元模式:提升系统性能的利器

原型模式和享元模式&#xff0c;前者是在创建多个实例时&#xff0c;对创建过程的性能进行调优&#xff1b;后者是用减少创建实例的方式&#xff0c;来调优系统性能。这么看&#xff0c;你会不会觉得两个模式有点相互矛盾呢&#xff1f; 其实不然&#xff0c;它们的使用是分场…...

【Web安全】sqlmap的使用笔记及示例

【Web安全】sqlmap的使用笔记 文章目录 【Web安全】sqlmap的使用笔记1. 目标2. 脱库2.1. 脱库&#xff08;补充&#xff09; 3. 其他3.1. 其他&#xff08;补充&#xff09; 4. 绕过脚本tamper讲解 1. 目标 操作作用必要示例-u指定URL&#xff0c;检测注入点sqlmap -u http://…...

机器学习第12天:聚类

文章目录 机器学习专栏 无监督学习介绍 聚类 K-Means 使用方法 实例演示 代码解析 绘制决策边界 本章总结 机器学习专栏 机器学习_Nowl的博客-CSDN博客 无监督学习介绍 某位著名计算机科学家有句话&#xff1a;“如果智能是蛋糕&#xff0c;无监督学习将是蛋糕本体&a…...

若依框架导出下载pdf/excel以及导入打印等

一、打印文件 // 报表打印 handlePdf(row) {wayAPI(row.billcode).then((res) > {var binaryData [];binaryData.push(res);let url window.URL.createObjectURL(new Blob(binaryData, {type: "application/pdf"})); window.open("/static/pdf/web/v…...

汇编-PROC定义子过程(函数)

过程定义 过程用PROC和ENDP伪指令来声明&#xff0c; 并且必须为其分配一个名字(有效的标识符) 。目前为止&#xff0c; 我们所有编写的程序都包含了一个main过程&#xff0c; 例如&#xff1a; 当要创建的过程不是程序的启动过程时&#xff0c; 就用RET指令来结束它。RET强制…...

服务器主机安全的重要性及防护策略

在数字化时代&#xff0c;服务器主机安全是任何组织都必须高度重视的问题。无论是大型企业还是小型企业&#xff0c;无论是政府机构还是个人用户&#xff0c;都需要确保其服务器主机的安全&#xff0c;以防止数据泄露、网络攻击和系统瘫痪等严重后果。 一、服务器主机安全的重…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...