当前位置: 首页 > news >正文

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv

  • 一、论文
  • yolov5加入的方式

在这里插入图片描述

论文
源代码

一、论文

基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是固定的;另一方面,卷积核的大小是固定为k × k的,它是一个固定的方形形状,参数的数量往往与大小成正比。很明显,在不同的数据集和不同的位置,目标的形状和大小是不同的。具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标。针对上述问题,本研究探索了可变核卷积(AKConv),它为卷积核提供了任意数量的参数和任意采样形状,为网络开销和性能之间的权衡提供了更丰富的选择。在AKConv中,我们通过一种新的坐标生成算法来定义任意大小的卷积核的初始位置。为了适应目标的变化,我们引入偏移量来调整每个位置的样本形状。此外,我们通过使用相同大小和不同初始采样形状的AKConv来探索神经网络的效果。AKConv通过不规则卷积操作完成了高效的特征提取过程,为卷积采样形状带来了更多的探索选择。在COCO2017、VOC

相关文章:

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…...

机器学习-激活函数的直观理解

机器学习-激活函数的直观理解 在机器学习中,激活函数(Activation Function)是用于引入非线性特性的一种函数,它在神经网络的每个神经元上被应用。 如果不使用任何的激活函数,那么神经元的响应就是wxb,相当…...

Fedora 36 ARM 镜像源更换与软件安装

1、什么是Fedora Fedora Linux是较具知名度的Linux发行套件之一,由Fedora专案社群开发、红帽公司赞助,目标是建立一套新颖、多功能并且自由的作业系统。 Fedora是商业化的Red Hat Enterprise Linux发行版的上游原始码。 2、Fedora软件安装 64 位 .deb&a…...

多级缓存快速上手

哈喽~大家好,这篇来看看多级缓存。 🥇个人主页:个人主页​​​​​ 🥈 系列专栏:【微服务】 🥉与这篇相关的文章: JAVA进程和线程JAVA进程和线程-CSDN博客Http…...

初始React

<!DOCTYPE html> <html> <head> <meta charset"UTF-8" /> <title>React</title> </head> <body> 了解React <!-- React是一个用于构建web和原生态交互界面的库 相对于传统DOM开发优势&#xff1a;组件化开发…...

2.5 逆矩阵

一、逆矩阵的注释 假设 A A A 是一个方阵&#xff0c;其逆矩阵 A − 1 A^{-1} A−1 与它的大小相同&#xff0c; A − 1 A I A^{-1}AI A−1AI。 A A A 与 A − 1 A^{-1} A−1 会做相反的事情。它们的乘积是单位矩阵 —— 对向量无影响&#xff0c;所以 A − 1 A x x A^{…...

物流实时数仓:数仓搭建(ODS)

系列文章目录 物流实时数仓&#xff1a;采集通道搭建 物流实时数仓&#xff1a;数仓搭建 文章目录 系列文章目录前言一、IDEA环境准备1.pom.xml2.目录创建 二、代码编写1.log4j.properties2.CreateEnvUtil.java3.KafkaUtil.java4.OdsApp.java 三、代码测试总结 前言 现在我们…...

【ARM 嵌入式 编译 Makefile 系列 18 -- Makefile 中的 export 命令详细介绍】

文章目录 Makefile 中的 export 命令详细介绍Makefile 使用 export导出与未导出变量的区别示例&#xff1a;导出变量以供子 Makefile 使用 Makefile 中的 export 命令详细介绍 在 Makefile 中&#xff0c;export 命令用于将变量从 Makefile 导出到由 Makefile 启动的子进程的环…...

【opencv】计算机视觉:停车场车位实时识别

目录 目标 整体流程 背景 详细讲解 目标 我们想要在一个实时的停车场监控视频中&#xff0c;看看要有多少个车以及有多少个空缺车位。然后我们可以标记空的&#xff0c;然后来车之后&#xff0c;实时告诉应该停在那里最方便、最近&#xff01;&#xff01;&#xff01;实现…...

播放器开发(三):FFmpeg与SDL环境配置

学习课题&#xff1a;逐步构建开发播放器【QT5 FFmpeg6 SDL2】 环境配置 我这边的是使用macOS&#xff1b;IDE用的是CLion&#xff1b;CMake构建&#xff0c;除了创建项目步骤、CMakeLists文件有区别之外的代码层面不会有太大区别。 配置上只添加一下CMakeLists中FFmpeg和SD…...

KubeVela核心控制器原理浅析

前言 在学习 KubeVela 的核心控制器之前&#xff0c;我们先简单了解一下 KubeVela 的相关知识。 KubeVela 本身是一个应用交付与管理控制平面&#xff0c;它架在 Kubernetes 集群、云平台等基础设施之上&#xff0c;通过开放应用模型来对组件、云服务、运维能力、交付工作流进…...

迎接“全全闪”时代 XSKY星辰天合发布星海架构和星飞产品

11 月 17 日消息&#xff0c;北京市星辰天合科技股份有限公司&#xff08;简称&#xff1a;XSKY星辰天合&#xff09;在北京首钢园举办了主题为“星星之火”的 XSKY 星海全闪架构暨星飞存储发布会。 &#xff08;图注&#xff1a;XSKY星辰天合 CEO 胥昕&#xff09; XSKY星辰天…...

[架构相关]基础架构设计原则

基础架构设计原则 文章目录 基础架构设计原则一、可用性&#xff08;Availability&#xff09;1.1、引入冗余1.2、负载均衡1.3、故障转移1.4、备份和恢复策略 二、可扩展性&#xff08;Scalability&#xff09;2.1 水平扩展2.2 垂直扩展2.3 弹性扩展 三、可靠性&#xff08;Rel…...

测试在 Oracle 下直接 rm dbf 数据文件并重启数据库

创建一个新的表空间并创建新的用户&#xff0c;指定新表空间为新用户的默认表空间 create tablespace zzw datafile /oradata/cesdb/zzw01.dbf size 10m;zzw用户已经创建过&#xff0c;这里修改其默认表空间 alter user zzw quota unlimited on zzw; alter user zzw default …...

【开源】基于JAVA的计算机机房作业管理系统

项目编号&#xff1a; S 017 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S017&#xff0c;文末获取源码。} 项目编号&#xff1a;S017&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课…...

Ubuntu 配置静态 IP

Ubuntu 18 开始可以使用netplan配置网络。配置文件位于/etc/netplan/xxx.yaml中&#xff0c;netplan默认是使用NetworkManager来配置网卡信息的。 修改配置文件&#xff1a; 1、打开文件编辑&#xff1a;sudo vi 01-network-manager-all.yaml原文件内容如下&#xff1a;netwo…...

Spring Cloud实战 |分布式系统的流量控制、熔断降级组件Sentinel如何使用

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…...

第六届 传智杯初赛B组

文章目录 A. 字符串拼接&#x1f37b; AC code B. 最小差值&#x1f37b; AC code C. 红色和紫色&#x1f37b; AC code D. abb&#x1f37b; AC code E. kotori和素因子&#x1f37b; AC code F. 红和蓝&#x1f37b; AC code &#x1f970; Tips&#xff1a;AI可以把代码从 j…...

文档向量化工具(二):text2vec介绍

目录 前言 text2vec开源项目 核心能力 文本向量表示模型 本地试用 安装依赖 下载模型到本地&#xff08;如果你的网络能直接从huggingface上拉取文件&#xff0c;可跳过&#xff09; ​运行试验代码 前言 在上一篇文章中介绍了&#xff0c;如何从不同格式的文件里提取…...

vscode中pylance无法显示outline无法跳转

当打开的workspce中有较多的文件时&#xff0c;pylance需要分析的文件太多&#xff0c;导致卡住&#xff0c;无法分析到对应的python文件 常见的情况是&#xff0c;当我们在workspace中包含了data文件夹&#xff08;通常是通过软连接方式把数据集链接过来&#xff09;&#xf…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...