当前位置: 首页 > news >正文

【深度学习笔记】01 数据操作与预处理

01 数据操作与预处理

    • 一、数据操作
      • 1.1 基本数据操作
      • 1.2 广播机制
      • 1.3 索引和切片
      • 1.4 节省内存
      • 1.5 转换为其他Python对象
    • 二、数据预处理
      • 读取数据集
      • 处理缺失值
      • 转换为张量格式
      • 练习

一、数据操作

1.1 基本数据操作

导入torch

import torch

张量表示一个由数值组成的数组,这个数组可能有多个维度(轴)。具有一个轴的张量对应数学上的向量(vector),具有两个轴的张量对应数学上的矩阵(matrix),具有两个以上轴的张量没有特定的数学名称。

张量中的每个值称为张量的元素(element)。

# 使用arange创建一个行向量x
x = torch.arange(12)
x
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

可以通过张量的shape属性来访问张量(沿每个轴的长度)的形状(shape)

x.shape
torch.Size([12])

如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。因为这里处理的是一个向量,所以它的shape与size相同。

x.numel()
12
x.size()
torch.Size([12])

要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数

X = x.reshape(3, 4)
X
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])

如果我们的目标形状是(高度,宽度),那么在知道宽度后,高度会被自动计算得出。我们可以通过-1来调用此自动计算出形状,即可以用x.reshape(-1, 4)获x.reshape(3, -1)来取代x.reshape(3, 4)。

使用全0、全1、其他常量或者从特定分布中随机采样的数字来初始化矩阵:

# 全0矩阵
torch.zeros((2, 3, 4))
tensor([[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]],[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]]])
# 全1矩阵
torch.ones((2, 3, 4))
tensor([[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]],[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]]])
# 每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样的矩阵
torch.randn(3, 4)
tensor([[-0.1503, -0.1886,  0.3691, -0.5482],[ 1.1731,  0.1596,  1.1706,  0.0437],[ 0.0513, -0.5481, -0.7855, -0.9853]])

运算符:

x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x / y, x ** y  # **运算符表示求幂运算
(tensor([ 3.,  4.,  6., 10.]),tensor([-1.,  0.,  2.,  6.]),tensor([0.5000, 1.0000, 2.0000, 4.0000]),tensor([ 1.,  4., 16., 64.]))
torch.exp(x)  # 求幂
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])

把多个张量连接(concatenate)在一起

X = torch.arange(12, dtype = torch.float32).reshape((3, 4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim = 0), torch.cat((X, Y), dim = 1)  
(tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[ 2.,  1.,  4.,  3.],[ 1.,  2.,  3.,  4.],[ 4.,  3.,  2.,  1.]]),tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],[ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],[ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))

逻辑运算符构建二元张量:

X == Y
tensor([[False,  True, False,  True],[False, False, False, False],[False, False, False, False]])

对张量中所有元素求和,会产生一个单元素张量

X.sum()
tensor(66.)

1.2 广播机制

在某些情况下,即使张量形状不同,我们仍然可以通过调用广播机制(broadcasting mechanism)来执行按元素操作。这种机制的工作方式如下:

​ (1)通过适当复制元素来扩展一个获两个数组,以便在转换之后,两个张量具有相同的形状;

​ (2)对生成的数组执行按元素操作。

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
(tensor([[0],[1],[2]]),tensor([[0, 1]]))
a + b
tensor([[0, 1],[1, 2],[2, 3]])

1.3 索引和切片

与任何python数组一样,第一个元素的索引是0,最后一个元素的索引是-1;可以指定范围以包含第一个元素和最后一个之前的元素。

X[-1], X[1:3]
(tensor([ 8.,  9., 10., 11.]),tensor([[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]]))

除读取外,还可以通过制定索引将元素写入矩阵

X[1, 2] = 9
X
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  9.,  7.],[ 8.,  9., 10., 11.]])

如果想为多个元素赋相同的值,只需要索引所有元素,然后赋值。

X[0:2, :] = 12
X
tensor([[12., 12., 12., 12.],[12., 12., 12., 12.],[ 8.,  9., 10., 11.]])

其中,[0:2, :]访问第1行和第2行,其中“:”代表沿轴1(列)的所有元素

1.4 节省内存

运行一些操作可能会导致为新结果分配内存。
例如,如果我们用Y = X + Y,将取消引用Y指向的张量,而是指向新分配的内存处的张量。

before = id(Y)
Y = Y + X
id(Y) == before
False

运行Y = Y + X后,会发现id(Y)指向另一个位置。
这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置。

这可能是不可取的,原因有两个:

  1. 首先,我们不想总是不必要地分配内存。在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。通常情况下,我们希望原地执行这些更新;
  2. 如果我们不原地更新,其他引用仍然会指向旧的内存位置,这样我们的某些代码可能会无意中引用旧的参数。

执行原地操作非常简单。
我们可以使用切片表示法将操作的结果分配给先前分配的数组,例如Y[:] = 。
为了说明这一点,我们首先创建一个新的矩阵Z,其形状与另一个Y相同,
使用zeros_like来分配一个全0的块。

Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
id(Z): 1343601274288
id(Z): 1343601274288

如果后续计算中没有重复使用X,也可以使用 X[:] = X + Y 或 X += Y 来减少操作的内存开销。

before = id(X)
X += Y
id(X) == before
True

1.5 转换为其他Python对象

A = X.numpy()
B = torch.tensor(A)
type(A), type(B)
(numpy.ndarray, torch.Tensor)

要将大小为1的张量转换为Python标量,可以调用item函数或Python的内置函数

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)
(tensor([3.5000]), 3.5, 3.5, 3)

二、数据预处理

读取数据集

创建一个人工数据集,并存储在csv文件中

import osos.makedirs(os.path.join('..', 'data'), exist_ok = True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')  # 列名f.write('NA,Pave,127500\n')  # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

导入pandas包并调用read_csv函数

import pandas as pddata = pd.read_csv(data_file)
print(data)
   NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000

处理缺失值

“NaN”项代表缺失值
处理缺失数据的典型方法包括插值法和删除法,其中插值法用一个替代值弥补缺失值,删除法则直接忽略缺失值

在这里考虑插值法。通过位置索引iloc,将data分成inputs和outputs,其中前者为data的前两列,后者为data的最后一列。对于inputs中缺少的数值,用同一列的均值替换“NaN”项。

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.select_dtypes(include = 'number').mean())  # 区别于书中的inputs.fillna(inputs.mean())
print(inputs)
   NumRooms Alley
0       3.0  Pave
1       2.0   NaN
2       4.0   NaN
3       3.0   NaN

对于inputs中的类别值和离散值,我们将“NaN”视为一个类别。由于Alley列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。 Alley列为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。 缺少Alley列的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。

inputs = pd.get_dummies(inputs, dummy_na = True)
print(inputs)
   NumRooms  Alley_Pave  Alley_nan
0       NaN        True      False
1       2.0       False       True
2       4.0       False       True
3       NaN       False       True

转换为张量格式

现在inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。

import torchX = torch.tensor(inputs.to_numpy(dtype = float))
y = torch.tensor(outputs.to_numpy(dtype = float))
X, y
(tensor([[nan, 1., 0.],[2., 0., 1.],[4., 0., 1.],[nan, 0., 1.]], dtype=torch.float64),tensor([127500., 106000., 178100., 140000.], dtype=torch.float64))

练习

创建包含更多行和列的原始数据集
(1)删除缺失值最多的列
(2)将预处理后的数据集转换为张量格式

# 创建数据集
import osos.makedirs(os.path.join('..', 'data'), exist_ok = True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price,others\n')  # 列名f.write('NA,Pave,127500,Pave\n')  # 每行表示一个数据样本f.write('2,NA,106000,NA\n')f.write('4,NA,178100,Pave\n')f.write('NA,NA,140000,Pave\n')
import pandas as pddata = pd.read_csv(data_file)
print(data)
   NumRooms Alley   Price others
0       NaN  Pave  127500   Pave
1       2.0   NaN  106000    NaN
2       4.0   NaN  178100   Pave
3       NaN   NaN  140000   Pave
# 删除缺失值最多的列
count = 0
count_max = 0
labels = ['NumRooms','Alley','Price','others']
for label in labels:count = data[label].isna().sum()if count > count_max:count_max = countflag = label
data_new = data.drop(flag, axis = 1)
data_new
NumRoomsPriceothers
0NaN127500Pave
12.0106000NaN
24.0178100Pave
3NaN140000Pave
# 将data_new分成inputs和outputs,其中前者为data_new的前两列,后者为data_new的最后一列
inputs, outputs = data_new.iloc[:, 0:2], data_new.iloc[:, 2]
inputs = inputs.fillna(inputs.select_dtypes(include = 'number').mean())  # 对于inputs中的缺失值,用同一列的均值替换
print(inputs)
outputs = pd.get_dummies(outputs, dummy_na = True)
print(outputs)
   NumRooms   Price
0       3.0  127500
1       2.0  106000
2       4.0  178100
3       3.0  140000Pave    NaN
0   True  False
1  False   True
2   True  False
3   True  False
# 转换为张量格式
import torchX = torch.tensor(inputs.to_numpy(dtype = float))
y = torch.tensor(outputs.to_numpy(dtype = float))
X, y
(tensor([[3.0000e+00, 1.2750e+05],[2.0000e+00, 1.0600e+05],[4.0000e+00, 1.7810e+05],[3.0000e+00, 1.4000e+05]], dtype=torch.float64),tensor([[1., 0.],[0., 1.],[1., 0.],[1., 0.]], dtype=torch.float64))

相关文章:

【深度学习笔记】01 数据操作与预处理

01 数据操作与预处理 一、数据操作1.1 基本数据操作1.2 广播机制1.3 索引和切片1.4 节省内存1.5 转换为其他Python对象 二、数据预处理读取数据集处理缺失值转换为张量格式练习 一、数据操作 1.1 基本数据操作 导入torch import torch张量表示一个由数值组成的数组&#xff…...

Python与设计模式--门面模式

8-Python与设计模式–门面模式 一、火警报警器(1) 假设有一组火警报警系统,由三个子元件构成:一个警报器,一个喷水器, 一个自动拨打电话的装置。其抽象如下: class AlarmSensor:def run(self):…...

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…...

机器学习-激活函数的直观理解

机器学习-激活函数的直观理解 在机器学习中,激活函数(Activation Function)是用于引入非线性特性的一种函数,它在神经网络的每个神经元上被应用。 如果不使用任何的激活函数,那么神经元的响应就是wxb,相当…...

Fedora 36 ARM 镜像源更换与软件安装

1、什么是Fedora Fedora Linux是较具知名度的Linux发行套件之一,由Fedora专案社群开发、红帽公司赞助,目标是建立一套新颖、多功能并且自由的作业系统。 Fedora是商业化的Red Hat Enterprise Linux发行版的上游原始码。 2、Fedora软件安装 64 位 .deb&a…...

多级缓存快速上手

哈喽~大家好,这篇来看看多级缓存。 🥇个人主页:个人主页​​​​​ 🥈 系列专栏:【微服务】 🥉与这篇相关的文章: JAVA进程和线程JAVA进程和线程-CSDN博客Http…...

初始React

<!DOCTYPE html> <html> <head> <meta charset"UTF-8" /> <title>React</title> </head> <body> 了解React <!-- React是一个用于构建web和原生态交互界面的库 相对于传统DOM开发优势&#xff1a;组件化开发…...

2.5 逆矩阵

一、逆矩阵的注释 假设 A A A 是一个方阵&#xff0c;其逆矩阵 A − 1 A^{-1} A−1 与它的大小相同&#xff0c; A − 1 A I A^{-1}AI A−1AI。 A A A 与 A − 1 A^{-1} A−1 会做相反的事情。它们的乘积是单位矩阵 —— 对向量无影响&#xff0c;所以 A − 1 A x x A^{…...

物流实时数仓:数仓搭建(ODS)

系列文章目录 物流实时数仓&#xff1a;采集通道搭建 物流实时数仓&#xff1a;数仓搭建 文章目录 系列文章目录前言一、IDEA环境准备1.pom.xml2.目录创建 二、代码编写1.log4j.properties2.CreateEnvUtil.java3.KafkaUtil.java4.OdsApp.java 三、代码测试总结 前言 现在我们…...

【ARM 嵌入式 编译 Makefile 系列 18 -- Makefile 中的 export 命令详细介绍】

文章目录 Makefile 中的 export 命令详细介绍Makefile 使用 export导出与未导出变量的区别示例&#xff1a;导出变量以供子 Makefile 使用 Makefile 中的 export 命令详细介绍 在 Makefile 中&#xff0c;export 命令用于将变量从 Makefile 导出到由 Makefile 启动的子进程的环…...

【opencv】计算机视觉:停车场车位实时识别

目录 目标 整体流程 背景 详细讲解 目标 我们想要在一个实时的停车场监控视频中&#xff0c;看看要有多少个车以及有多少个空缺车位。然后我们可以标记空的&#xff0c;然后来车之后&#xff0c;实时告诉应该停在那里最方便、最近&#xff01;&#xff01;&#xff01;实现…...

播放器开发(三):FFmpeg与SDL环境配置

学习课题&#xff1a;逐步构建开发播放器【QT5 FFmpeg6 SDL2】 环境配置 我这边的是使用macOS&#xff1b;IDE用的是CLion&#xff1b;CMake构建&#xff0c;除了创建项目步骤、CMakeLists文件有区别之外的代码层面不会有太大区别。 配置上只添加一下CMakeLists中FFmpeg和SD…...

KubeVela核心控制器原理浅析

前言 在学习 KubeVela 的核心控制器之前&#xff0c;我们先简单了解一下 KubeVela 的相关知识。 KubeVela 本身是一个应用交付与管理控制平面&#xff0c;它架在 Kubernetes 集群、云平台等基础设施之上&#xff0c;通过开放应用模型来对组件、云服务、运维能力、交付工作流进…...

迎接“全全闪”时代 XSKY星辰天合发布星海架构和星飞产品

11 月 17 日消息&#xff0c;北京市星辰天合科技股份有限公司&#xff08;简称&#xff1a;XSKY星辰天合&#xff09;在北京首钢园举办了主题为“星星之火”的 XSKY 星海全闪架构暨星飞存储发布会。 &#xff08;图注&#xff1a;XSKY星辰天合 CEO 胥昕&#xff09; XSKY星辰天…...

[架构相关]基础架构设计原则

基础架构设计原则 文章目录 基础架构设计原则一、可用性&#xff08;Availability&#xff09;1.1、引入冗余1.2、负载均衡1.3、故障转移1.4、备份和恢复策略 二、可扩展性&#xff08;Scalability&#xff09;2.1 水平扩展2.2 垂直扩展2.3 弹性扩展 三、可靠性&#xff08;Rel…...

测试在 Oracle 下直接 rm dbf 数据文件并重启数据库

创建一个新的表空间并创建新的用户&#xff0c;指定新表空间为新用户的默认表空间 create tablespace zzw datafile /oradata/cesdb/zzw01.dbf size 10m;zzw用户已经创建过&#xff0c;这里修改其默认表空间 alter user zzw quota unlimited on zzw; alter user zzw default …...

【开源】基于JAVA的计算机机房作业管理系统

项目编号&#xff1a; S 017 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S017&#xff0c;文末获取源码。} 项目编号&#xff1a;S017&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课…...

Ubuntu 配置静态 IP

Ubuntu 18 开始可以使用netplan配置网络。配置文件位于/etc/netplan/xxx.yaml中&#xff0c;netplan默认是使用NetworkManager来配置网卡信息的。 修改配置文件&#xff1a; 1、打开文件编辑&#xff1a;sudo vi 01-network-manager-all.yaml原文件内容如下&#xff1a;netwo…...

Spring Cloud实战 |分布式系统的流量控制、熔断降级组件Sentinel如何使用

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…...

第六届 传智杯初赛B组

文章目录 A. 字符串拼接&#x1f37b; AC code B. 最小差值&#x1f37b; AC code C. 红色和紫色&#x1f37b; AC code D. abb&#x1f37b; AC code E. kotori和素因子&#x1f37b; AC code F. 红和蓝&#x1f37b; AC code &#x1f970; Tips&#xff1a;AI可以把代码从 j…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...