当前位置: 首页 > news >正文

如何科学地划分医学图像数据集

  在进行医学图像分类任务时,如何科学地划分数据集是一个重要的问题。这个问题的答案取决于你的数据特性和实验目标。一般来说,有两种常见的数据划分方法:按照比例划分和按照病例划分。

按照比例划分

  按照比例划分是一种常见的方法,它将所有的数据混合在一起,然后按照一定的比例(如80%:10%:10%或70%:15%:15%等)随机划分为训练集、验证集和测试集。

优点:

  • 代表性:由于是随机划分,因此每个集合(训练集、验证集、测试集)中都能包含各种类型的数据,可以保证数据的代表性。
  • 简单直观:这种方法操作简单,只需要随机打乱数据,然后按照比例划分即可。

缺点:

  • 数据泄露:如果数据之间存在关联性(例如,同一病例的不同切片),那么这种方法可能会导致数据泄露,即训练集中的信息在验证集或测试集中出现,这可能会导致模型过拟合。
  • 稳定性差:由于是随机划分,因此每次划分得到的结果可能都不同,这可能会影响模型的稳定性。

解决方法:

  • 数据泄露:为了避免数据泄露,我们可以在划分数据集之前,先将同一病例的数据聚在一起,然后在病例级别上进行随机划分,这样可以确保同一病例的数据不会同时出现在训练集和验证集/测试集中。
  • 稳定性差:为了提高模型的稳定性,我们可以使用交叉验证的方法。交叉验证是一种统计学上将数据样本切割成较小子集的实用方法。在这种方法中,我们会进行多次划分和训练,然后取平均结果,这样可以提高模型的稳定性。

按照病例划分

  按照病例划分是另一种常见的方法,它将每个病例的数据作为一个整体,按照一定的比例划分为训练集、验证集和测试集。

优点:

  • 避免数据泄露:由于是按病例划分,因此可以避免同一病例的数据同时出现在训练集和验证集/测试集中,从而避免数据泄露。
  • 考虑数据关联性:如果数据之间存在关联性(例如,同一病例的不同切片),那么按病例划分可以更好地考虑这种关联性。

缺点:

  • 代表性差:如果不同病例之间的差异较大,那么按病例划分可能会导致某些集合中缺乏某些类型的数据,从而影响数据的代表性。
  • 操作复杂:需要对每个病例的数据进行追踪,操作相对复杂。

解决方法:

  • 代表性差:为了提高数据的代表性,我们可以在划分数据集之前,先对数据进行分层抽样,确保每个集合中都包含各种类型的数据。
  • 操作复杂:虽然按病例划分的操作相对复杂,但我们可以通过编写脚本或使用数据处理工具来简化这个过程。

结论

  在选择数据划分方法时,需要根据你的数据特性和实验目标来决定。如果你的数据之间存在关联性,那么按照病例划分可能更好。如果你的数据独立同分布,那么按照比例划分可能更好。此外,你还可以通过交叉验证等方法来进一步提高模型的稳健性和可靠性。希望这篇博文对你有所帮助!

相关文章:

如何科学地划分医学图像数据集

在进行医学图像分类任务时,如何科学地划分数据集是一个重要的问题。这个问题的答案取决于你的数据特性和实验目标。一般来说,有两种常见的数据划分方法:按照比例划分和按照病例划分。 按照比例划分 按照比例划分是一种常见的方法&#xff0c…...

【开源】基于Vue+SpringBoot的食品生产管理系统

项目编号: S 044 ,文末获取源码。 \color{red}{项目编号:S044,文末获取源码。} 项目编号:S044,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 加工厂管理模块2.2 客户管理模块2.3…...

如何减少40%的Docker构建时间

随着Docker的普及,许多公司的产品会将组件构建为Docker镜像。但随着时间的推移,一些镜像变得越来越大,对应的CI构建也变得越来越慢。 如果能在喝完一杯咖啡的时间(不超过5分钟)内完成构建,将是一个理想状态…...

Scrapy爬虫异步框架之持久化存储(一篇文章齐全)

1、Scrapy框架初识(点击前往查阅) 2、Scrapy框架持久化存储 3、Scrapy框架内置管道(点击前往查阅) 4、Scrapy框架中间件(点击前往查阅) Scrapy 是一个开源的、基于Python的爬虫框架,它提供了…...

JVM——几种常见的对象引用

目录 1. 软引用软引用的使用场景-缓存 2.弱引用3.虚引用和终结器引用 可达性算法中描述的对象引用,一般指的是强引用,即是GCRoot对象对普通对象有引用关系,只要这层关系存在, 普通对象就不会被回收。除了强引用之外,Ja…...

C++期末考试选择题题库100道C++期末判断题的易错知识点复习

今天备考C,看到了一些好的复习资料,整合一起给大家分享一下 选择题 对于常数据成员,下面描述正确的是 【 B 】 A. 常数据成员必须被初始化,并且不能被修改 B. 常数据成员可以不初始化,并且不能被修改 C. 常数据成…...

使用qemu调试arm内核

参考书籍《奔跑吧Linux内核》–笨叔 下载Linux-5.0源码 https://benshushu.coding.net/public/runninglinuxkernel_5.0/runninglinuxkernel_5.0/git/files或者直接git源码 git clone https://e.coding.net/benshushu/runninglinuxkernel_5.0/runninglinuxkernel_5.0.git安装必…...

Pytorch深度学习实战2-1:详细推导Xavier参数初始化(附Python实现)

目录 1 参数初始化2 Xavier参数初始化原理2.1 前向传播阶段2.2 反向传播阶段2.3 可视化思考 3 Python实现 1 参数初始化 参数初始化在深度学习中起着重要的作用。在神经网络中,参数初始化是指为模型中的权重和偏置项设置初始值的过程。合适的参数初始化可以帮助模型…...

Java的threadd常用方法

常用API 给当前线程命名 主线程 package com.itheima.d2;public class ThreadTest1 {public static void main(String[] args) {Thread t1 new MyThread("子线程1");//t1.setName("子线程1");t1.start();System.out.println(t1.getName());//获得子线程…...

一键修复0xc000007b错误代码,科普关于0xc000007b错误的原因

最近很多用户都有遇到过0xc000007b错误的问题,出现这样的问题想必大家都会手足无措吧,其实解决这样的问题也有很简单的解决方法,这篇文章就来教大家如何一键修复0xc000007b,同时给大家科普一下关于0xc000007b错误的原因&#xff0…...

使用Selenium、Python和图鉴打码平台实现B站登录

selenium实战之模拟登录b站 基础知识铺垫: 利用selenium进行截图: driver.save_screenshot() 注意图片文件名要用png结尾. 关于移动: ActionChains(bro).move_to_element_with_offset()# 对于某个图像ActionChains(bro).move_by_offset(…...

嵌入式设备视频编码比较:H.264、H.265、MPEG-2和MJPG

在嵌入式设备领域,视频编码是一项关键技术,它能够将高清视频压缩为更小的数据量,以实现高效的存储和传输。本文将对四种常见的视频编码标准进行详细比较,包括H.264(AVC)、H.265(HEVC&#xff09…...

创意二维码案例:意大利艺术家的最新二维码艺术展!

意大利艺术家——米开朗基罗皮斯特莱托(Michelangelo Pistoletto)的个人艺术展“二维码‘说’”(QR CODE POSSESSION)正在北京798艺术区的常青艺术画廊展出,这是一次别出心裁的创意艺术展! 主要体现在3个方…...

XML映射文件

<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace"org.mybatis.example.BlogMapper&q…...

AlDente Pro v1.22.2(mac电池最大充电限制工具)

AlDente Pro是一款适用于Mac操作系统的小工具&#xff0c;可以帮助您限制电池充电量以延长电池寿命。通常情况下&#xff0c;电池在充满的状态下会继续接受电源充电&#xff0c;这可能会导致电池寿命缩短。使用AlDente Pro&#xff0c;您可以设置电池只充到特定的充电水平&…...

原生小程序图表

原生小程序使用图表 话不多说直接进入正题 官方文档: https://www.ucharts.cn/v2/#/ 下载文件 首先去gitee上把文件下载到自己的项目中 https://gitee.com/uCharts/uCharts 找到微信小程序和里面的组件 把里面src下的文件全部下载下来放入自己项目中 项目文件 新建文件…...

UniPro集成华为云WeLink 为企业客户构建互为联接的协作平台

华为云WeLink是华为开启数字化办公体验、帮助企业实现数字化转型的实践&#xff0c;类似钉钉。UniPro的客户企业中&#xff0c;有使用WeLink作为协作工具的&#xff0c;基于客户的实际业务需求&#xff0c;UniPro实现了与WeLink集成的能力&#xff0c;以帮助客户企业丰富和扩展…...

【论文解读】基于生成式面部先验的真实世界盲脸修复

论文地址&#xff1a;https://arxiv.org/pdf/2101.04061.pdf 代码地址&#xff1a;https://github.com/TencentARC/GFPGAN 图片解释&#xff1a; 与最先进的面部修复方法的比较&#xff1a;HiFaceGAN [67]、DFDNet [44]、Wan 等人。[61] 和 PULSE [52] 在真实世界的低质量图像…...

蓝桥杯第四场双周赛(1~6)

1、水题 2、模拟题&#xff0c;写个函数即可 #define pb push_back #define x first #define y second #define int long long #define endl \n const LL maxn 4e057; const LL N 5e0510; const LL mod 1e097; const int inf 0x3f3f; const LL llinf 5e18;typedef pair…...

【Web】CmsEasy 漏洞复现

访问主页 到处点一点没啥发现 扫目录 访问/admin 账号密码都是admin admin(弱口令) 登录成功 看到左边列表有模板&#xff0c;心里大概有数了哈 进行一波历史漏洞的查 CmsEasy_v5.7 漏洞测试 payload1: 1111111111";}<?php phpinfo()?> payload2: 11";…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...