当前位置: 首页 > news >正文

Python BDD 框架比较之 pytest-bdd vs behave

pytest-bddbehave是 Python 的两个流行的 BDD 测试框架,两者都可以用来编写用户故事和可执行的测试用例,
具体选择哪一个则需要根据实际的项目状况来看。
先简单看一下两者的功能:
pytest-bdd

  1. 基于pytest测试框架,可以与pytest的其他功能(例如 fixtures)一起使用。
  2. 提供了一种紧凑的步骤定义方式,可以通过装饰器定义并重复使用步骤。
  3. 支持参数化的测试,这样可以用同一组步骤进行多组数据的测试。

behave

  1. 基于 Python 的unittest测试框架。
  2. behave的步骤文件更加接近纯文本形式,对非编程人员更友好。
  3. 支持使用environment.py文件来定义在整个 test suite 运行前后需要进行的操作。

hehave

以下是behave的一些优点和特性:

  1. 适用于非技术团队成员:使用 Gherkin 语言,可以撰写更接近自然语言的测试场景描述,使得产品经理、商业分析师等非技术团队成员也能够理解、修改或编写测试场景。

  2. 环境控制behave提供了在测试运行前后设置和清理环境的功能,例如数据库初始化或数据清理等,只需要在environment.py文件里定义相应的函数即可。

  3. 可读性强和可维护性高behave强调的是实现从用户角度去描述系统行为的测试,这使得测试和实际用户需求更加贴合,增加了测试的可读性。而且将测试用例编写为人类可读的语言,可以提高代码的可维护性。

  4. 创造可共享的步骤:可以为常用的操作创建可重用的步骤,这样就能写出更加简洁、易于维护的测试代码。

  5. 对标/兼容 Cucumber:behave的 Gherkin 语言实现与宽广使用的 Cucumber 测试框架非常接近,这一点在迁移到或从 Cucumber 环境中迁出时会很有用。

  6. 与其他 Python 测试框架相容behave可与unittestdoctestnosepy.test等 Python 测试工具完美集成。

综上所述,behave提供了一种高度可读、可共享、适合大规模测试及非技术团队成员的 BDD 测试工具。

pytest-bdd 与 behave的比较

behavepytest-bdd都是 Python 下常用的为支持 BDD(行为驱动开发)流程而设计的测试框架,它们都采用.feature文件来描述行为,并使用相似的 Gherkin 语言语法进行描述。它们的.feature文件的格式大致上是相同的,但是在实际的使用和处理上可能会有一些细微差别。

以下是behavepytest-bdd来处理.feature文件的一些细节差异:

  • Scenario 参数化behave使用Scenario Outline语法来实现参数化场景,而pytest-bdd使用Scenarios来实现参数化场景。在behave中,你必须定义 Examples 表格并在其中提供参数值, 而在pytest-bdd中,你可以简单地用Scenarios读取一个外部.feature文件。

  • 装饰器参数:在pytest-bdd中,步骤装饰器(例如@given@when@then)可以接受一个可选的解析器,用于从步骤文本中捕获值。这样,分析器可以为已经定义的步骤参数提供多个场景。

其他大部分方面,behavepytest-bdd都是非常相似的,例如都支持GivenWhenThen这样的基本步骤,都允许在Background段落中定义在每个场景前都要运行的步骤,仍然允许你创建可重用的步骤定义。

综上,behavepytest-bdd处理.feature文件的方式非常相似,虽然在某些特性和实现上有些许差别。选哪个更多取决于个人或团队需求。

pytest-bdd 与 behave的实例比较

接下来以一个具体的加法运算器为实例,初步演示两者使用上的差异。

首先, 两者的规格文件基本相同, 这里的文件名是 :calculator.feature,内容如下:

Feature: AdditionScenario: Add two numbersGiven I have a calculatorWhen I enter "1" and "2"Then the result should be "3"

规格很简单, 就是验证加法, 1+2 =3。

主要的差别是两者在测试代码上的差异。
使用pytest-bdd编写的测试代码的文件名是 test_calculator.py, 内容如下:

import sys
import os
import pytest
#sys.path.append('D:/devworkspace/python-ency/chp3/tests/bdd/util')
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'util'))
from calculator import Calculator
from pytest_bdd import scenario, given, when, then, parsers@scenario('../features/calculator.feature','Add two numbers')
def test_add():print(sys.path.append(os.path.dirname(os.path.dirname(__file__))+'util'))pass@pytest.fixture
@given("I have a calculator")
def calculator():return Calculator()@when(parsers.parse('I enter "{a}" and "{b}"'))
def enter_numbers(calculator, a, b):calculator.a = int(a)calculator.b = int(b)@then(parsers.parse('the result should be "{result}"'))
def verify_result(calculator, result):assert calculator.add(calculator.a, calculator.b) == int(result)
  • pytest-bdd要求测试场景的函数和名称需要以test_开头, 步骤函数没有特定的要求,关于 pytest-bdd的更多命名的规范可以参考: 基于pytest-bdd的项目目录结构和命名规范

使用behave编写的测试代码的文件名同样是 test_calculator.py, 内容如下:

import sys
import os
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), 'util'))from behave import given, when, then
from calculator import Calculator@given('I have a calculator')
def step_impl(context):context.calc = Calculator()@when('I enter "{num1}" and "{num2}"')
def step_impl(context, num1, num2):context.result = context.calc.add(int(num1), int(num2))@then('the result should be "{expected_result}"')
def step_impl(context, expected_result):assert context.result == int(expected_result)

简单对比一下两者的测试代码区别:
在这里插入图片描述

  1. Beave 的写法相比更加简洁
  2. pytest-bdd 可以手动关联测试场景,看上去灵活度更高

总结

这两个框架都有其优点和特性,选择哪一个主要取决于特定需求。

  • 如果你已经在使用pytest,并且希望以最少的学习曲线使用 BDD,那么pytest-bdd可能是更好的选择。
  • 另一方面,如果你希望编写的测试代码更接近自然语言,并且适合非技术团队成员阅读和修改,那么behave可能是更好的选择。

相关文章:

Python BDD 框架比较之 pytest-bdd vs behave

pytest-bdd和behave是 Python 的两个流行的 BDD 测试框架,两者都可以用来编写用户故事和可执行的测试用例, 具体选择哪一个则需要根据实际的项目状况来看。 先简单看一下两者的功能: pytest-bdd 基于pytest测试框架,可以与pytest…...

【面经八股】搜广推方向:常见面试题(一)

【面经&八股】搜广推方向:常见面试题(一) 文章目录 【面经&八股】搜广推方向:常见面试题(一)1. 线下效果提升、线上效果不好。2. XGBoost 和 GBDT是什么?有什么区别?3. 偏差与方差。延伸知识(集成学习的三种方式: Bagging、Boosting、Stacking)。4. 随机森林…...

斐讯K2结合Padavan实现锐捷认证破解方法

前言 众所周知,校园网在传统模式下是不能直接插路由使用的,但苦于校园网只能连接一台设备的烦恼,不得不“另辟蹊径”来寻求新的解决路径,这不,它来了,它来了,它带着希望走来了。 本文基于斐讯…...

SpringBoot : ch06 整合 web (一)

前言 SpringBoot作为一款优秀的框架,不仅提供了快速开发的能力,同时也提供了丰富的文档和示例,让开发者更加容易上手。在本博客中,我们将介绍如何使用SpringBoot来整合Web应用程序的相关技术,并通过实例代码来演示如何…...

C++:OJ练习(每日练习系列)

编程题: 题一:把字符串转换成整数 把字符串转换成整数_牛客题霸_牛客网 示例1 输入: "2147483647" 返回值: 2147483647思路一: 第一步:it从str的第一个字符开始遍历,定义一个最后输…...

C语言—什么是数组名

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> int main() {int arr[]{1,2,3,4};printf("%p\n",arr);printf("%p\n",&arr);printf("%p\n",*arr);return 0; } 结论&#xff1a;数组名是数组首元素地址&#xff08;下标为0的元素…...

如何与死锁斗争!!!

其他系列文章导航 Java基础合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、死锁场景现场 二、死锁是如何产生的 三、死锁排查思路 四、sql模拟死锁复现 五、死锁的解决方案 前言 为避免影响业务&#xff0c;应尽可能避…...

【Java并发】聊聊不安全的HashMap以及ConcurrentHashMap

在实际的开发中&#xff0c;hashmap是比较常用的数据结构&#xff0c;如果所开发的系统并发量不高&#xff0c;那么没有问题&#xff0c;但是一旦系统的并发量增加一倍&#xff0c;那么就可能出现不可控的系统问题&#xff0c;所以在平时的开发中&#xff0c;我们除了需要考虑正…...

数据结构--->单链表

文章目录 链表链表的分类 单链表单链表的存储结构单链表主要实现的接口函数单链表尾插动态申请新节点单链表头插单链表的尾删单链表的头删在指定位置之前插入单链表查找插入 在指定位置之后插删除指定位置元素删除指定位置之后的元素顺序输出链表销毁单链表 顺序表和单链表的区…...

RT-Thread 线程间同步【信号量、互斥量、事件集】

线程间同步 一、信号量1. 创建信号量2. 获取信号量3. 释放信号量4. 删除信号量5. 代码示例 二、互斥量1. 创建互斥量2. 获取互斥量3. 释放互斥量4. 删除互斥量5. 代码示例 三、事件集1. 创建事件集2. 发送事件3. 接收事件4. 删除事件集5. 代码示例 简单来说&#xff0c;同步就是…...

B 树和 B+树 的区别

文章目录 B 树和 B树 的区别 B 树和 B树 的区别 了解二叉树、AVL 树、B 树的概念 B 树和 B树的应用场景 B 树是一种多路平衡查找树&#xff0c;为了更形象的理解。 二叉树&#xff0c;每个节点支持两个分支的树结构&#xff0c;相比于单向链表&#xff0c;多了一个分支。 …...

Go iota简介

当声明枚举类型或定义一组相关常量时&#xff0c;Go语言中的iota关键字可以帮助我们简化代码并自动生成递增的值。本文档将详细介绍iota的用法和行为。 iota关键字 iota是Go语言中的一个预定义标识符&#xff0c;它用于创建自增的无类型整数常量。iota的行为类似于一个计数器…...

PyQt6库和工具库QTDesigner安装与配置

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计12条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…...

性能测试:系统架构性能优化思路

今天谈下业务系统性能问题分析诊断和性能优化方面的内容。这篇文章重点还是谈已经上线的业务系统后续出现性能问题后的问题诊断和优化重点。 系统性能问题分析流程 我们首先来分析下如果一个业务系统上线前没有性能问题&#xff0c;而在上线后出现了比较严重的性能问题&#x…...

python字符串格式化

字符串格式化 # 2023年11月16日 星期四 y 2023 m 11 d 16 w 四 s %d年%d月%d日 星期%s%(y,m,d,w) print(s) s {}年{}月{}日 星期{}.format(y,m,d,w) print(s) s f{y}年{m}月{d}日 星期{w} print(s)...

Linux的基本指令(二)

目录 前言 学前补充 touch指令 mkdir指令 rmdir指令 rm指令 通配符* man指令 cp指令 mv指令(重要) 补充内容&#xff1a; 1、如何快速在Linux中写出代码 2、如何看待如此多的Linux指令 cat指令 前言 关于Linux的基本指令我们会分三到四篇文章进行分析&#xff0c…...

每日一题--寻找重复数

蝶恋花-王国维 阅尽天涯离别苦&#xff0c; 不道归来&#xff0c;零落花如许。 花底相看无一语&#xff0c;绿窗春与天俱莫。 待把相思灯下诉&#xff0c; 一缕新欢&#xff0c;旧恨千千缕。 最是人间留不住&#xff0c;朱颜辞镜花辞树。 目录 题目描述&#xff1a; 思路分析…...

C#,《小白学程序》第二十二课:大数的乘法(BigInteger Multiply)

1 文本格式 using System; using System.Linq; using System.Text; using System.Collections.Generic; /// <summary> /// 大数的&#xff08;加减乘除&#xff09;四则运算、阶乘运算 /// 乘法计算包括小学生算法、Karatsuba和Toom-Cook3算法 /// </summary> p…...

kafka,RabbitMQ,RocketMQ,他们之间的区别,架构,如何保证消息的不丢失,保证不重复消费,保证消息的有序性

文章目录 Kafka、RabbitMQ、RocketMQ 之间的区别是什么&#xff1f;性能数据可靠性服务可用性功能 RabbitMQ如何保证消息不丢失&#xff1f;Kafka 的架构说一下&#xff1f;Kafka 怎么保证消息是有序的&#xff1f;Kafka 怎么解决重复消费&#xff1f;Kafka 怎么保证消息不丢失…...

uni-app中vue3+setup实现下拉刷新、上拉加载更多效果

在小程序或各类app中&#xff0c;下拉刷新和上拉加载更多是极为常见和使用非常频繁的两个功能&#xff0c;通过对这两个功能的合理使用可以极大的方便用户进行操作。 合理的设计逻辑才能更容易挽留住用户&#xff0c;因为这些细节性的小功能点就变得极为重要起来。 那么在uni…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...