Opencv-C++笔记 (19) : 分水岭图像分割
文章目录
- 一、基于距离变换与分水岭的图像分割
- 1、图像分割
- 2、距离和变换与分水岭
- 距离变换常见算法有两种
- 分水岭变换常见的算法
- 3、距离变换API函数接口
- 4、watershed 分水岭函数API接口
- 步骤
- 5、代码
一、基于距离变换与分水岭的图像分割
1、图像分割
图像分割(Image Segmentation)是图像处理最重要的处理手段之一
图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans
2、距离和变换与分水岭
距离变换常见算法有两种
1、不断膨胀/ 腐蚀得到
2、基于倒角距离
分水岭变换常见的算法
分水岭法(Meyer)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。该算法的实现可以模拟成洪水淹没的过程,图像的最低点首先被淹没,然后水逐渐淹没整个山谷。当水位到达一定高度的时候将会溢出,这时在水溢出的地方修建堤坝,重复这个过程直到整个图像上的点全部被淹没,这时所建立的一系列堤坝就成为分开各个盆地的分水岭。分水岭算法对微弱的边缘有着良好的响应,但图像中的噪声会使分水岭算法产生过分割的现象。
————————————————
基于浸泡理论实现
3、距离变换API函数接口
距离变换用于计算图像中每一个非零点像素与其周围最近的零点像素之间的距离,返回的值保存了每一个非零点与最近零点的距离信息;在图像上的体现为图像上越亮的点,代表了离零点的距离越远。
void distanceTransform(
InputArray src,
OutputArray dst,
OutputArray labels,
int distanceType,
int maskSize,
int labelType=DIST_LABEL_CCOMP
)
(1)src是单通道的8bit的二值图像(只有0或1)
(2)dst表示的是计算距离的输出图像,可以使单通道32bit浮点数据
(3)distanceType表示的是选取距离的类型,可以设置为
DIST_USER User defined distance
DIST_L1=1 distance = |x1-x2| + |y1-y2
DIST_L2 the simple euclidean distance
DIST_C distance = max(|x1-x2|,|y1-y2|)
DIST_L12 L1-L2 metric: distance =2(sqrt(1+x*x/2) - 1))
DIST_FAIR distance = c^2(|x|/c-log(1+|x|/c)),c = 1.3998
DIST_WELSCH distance = c2/2(1-exp(-(x/c)2)), c= 2.9846
DIST_HUBER distance = |x|<c ? x^2/2 :c(|x|-c/2), c=1.345
(4)maskSize表示的是距离变换的掩膜模板,可以设置为3,5或CV_DIST_MASK_PRECISE,对 CV_DIST_L1 或CV_DIST_C 的情况,参数值被强制设定为 3, 因为3×3 mask 给出5×5 mask 一样的结果,而且速度还更快。
DIST_MASK_3 mask=3
DIST_MASK_5 mask=5
DIST_MASK-PRECISE
(5)labels表示可选输出2维数组;
(6)labelType表示的是输出二维数组的类型,8位或者32位浮点数,图像是单一通道,并且大小与输入图像一致
4、watershed 分水岭函数API接口
void watershed( InputArray image, InputOutputArray markers );
参数说明
(1)参数 image,必须是一个8bit3通道彩色图像矩阵序列。
(2) 输入或输出32位单通道的标记,和图像一样大小。(输入高峰轮廓标记);在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,这个是执行分水岭之前的要求。
算法会根据markers传入的轮廓作为种子(也就是所谓的注水点),对图像上其他的像素点根据分水岭算法规则进行判断,并对每个像素点的区域归属进行划定,直到处理完图像上所有像素点。而区域与区域之间的分界处的值被置为“-1”,以做区分。
步骤
1、将白色背景变成黑色-目的是为后面的变换做准备
2、使用filter2D与拉普拉斯算子实现图像对比度提高,sharp(锐化)
3、转为二值图像通过threshold
4、距离变换
5、对距离变换结果进行归一化到[0~1]之间
6、使用阈值,再次二值化,得到标记
7、腐蚀得到每个Peak - erode
8、发现轮廓 – findContours
9、绘制轮廓- drawContours
10、分水岭变换 watershed
11、对每个分割区域着色输出结果
————————————————
5、代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;int main(int argc, char** argv) {char input_win[] = "input image";char watershed_win[] = "watershed segmentation demo";Mat src = imread("D:/vcprojects/images/cards.png");// Mat src = imread("D:/kuaidi.jpg");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow(input_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);// 1. change backgroundfor (int row = 0; row < src.rows; row++) {for (int col = 0; col < src.cols; col++) {if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {src.at<Vec3b>(row, col)[0] = 0;src.at<Vec3b>(row, col)[1] = 0;src.at<Vec3b>(row, col)[2] = 0;}}}namedWindow("black background", CV_WINDOW_AUTOSIZE);imshow("black background", src);// sharpenMat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);Mat imgLaplance;Mat sharpenImg = src;filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);src.convertTo(sharpenImg, CV_32F);Mat resultImg = sharpenImg - imgLaplance;resultImg.convertTo(resultImg, CV_8UC3);imgLaplance.convertTo(imgLaplance, CV_8UC3);imshow("sharpen image", resultImg);// src = resultImg; // copy back// convert to binaryMat binaryImg;cvtColor(src, resultImg, CV_BGR2GRAY);threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);imshow("binary image", binaryImg);Mat distImg;distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);normalize(distImg, distImg, 0, 1, NORM_MINMAX);imshow("distance result", distImg);// binary againthreshold(distImg, distImg, .4, 1, THRESH_BINARY);Mat k1 = Mat::ones(13, 13, CV_8UC1);erode(distImg, distImg, k1, Point(-1, -1));imshow("distance binary image", distImg);// markers Mat dist_8u;distImg.convertTo(dist_8u, CV_8U);vector<vector<Point>> contours;findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));// create makersMat markers = Mat::zeros(src.size(), CV_32SC1);for (size_t i = 0; i < contours.size(); i++) {drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);}circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);imshow("my markers", markers*1000);// perform watershedwatershed(src, markers);Mat mark = Mat::zeros(markers.size(), CV_8UC1);markers.convertTo(mark, CV_8UC1);bitwise_not(mark, mark, Mat());imshow("watershed image", mark);// generate random colorvector<Vec3b> colors;for (size_t i = 0; i < contours.size(); i++) {int r = theRNG().uniform(0, 255);int g = theRNG().uniform(0, 255);int b = theRNG().uniform(0, 255);colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));}// fill with color and display final resultMat dst = Mat::zeros(markers.size(), CV_8UC3);for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {int index = markers.at<int>(row, col);if (index > 0 && index <= static_cast<int>(contours.size())) {dst.at<Vec3b>(row, col) = colors[index - 1];}else {dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);}}}imshow("Final Result", dst);waitKey(0);return 0;
}
输入原图像和锐化图像

原图和黑背景图(背景应为黑色)

threshold转化的二值化图片和距离变换结果图

距离变换结果图和二值化图像

相关文章:
Opencv-C++笔记 (19) : 分水岭图像分割
文章目录 一、基于距离变换与分水岭的图像分割1、图像分割2、距离和变换与分水岭距离变换常见算法有两种分水岭变换常见的算法 3、距离变换API函数接口4、watershed 分水岭函数API接口步骤 5、代码 一、基于距离变换与分水岭的图像分割 1、图像分割 图像分割(Image Segmentat…...
Linux以nohup方式运行jar包
1、在需要运行的jar包同级目录下建立启动脚本文件: 文件内容: #! /bin/bash #注意:必须有&让其后台执行,否则没有pid生成 jar包路径为绝对路径 nohup java -jar /usr/local/testDemo/jdkDemo-0.0.1-SNAPSHOT.jar >/us…...
【c++|SDL】开始使用之---demo
every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 SDL 记录 1. hello word #include<SDL2/SDL.h>SDL_Window* g_pWindow 0; SDL_Renderer* g_pRenderer 0;int main(int argc, char* args[]) {//…...
leetcode:有效的括号
题目描述 题目链接:20. 有效的括号 - 力扣(LeetCode) 题目分析 题目给了我们三种括号:()、{ }、[ ] 这里的匹配包括:顺序匹配和数量匹配 最优的思路就是用栈来解决: 括号依次入栈…...
使用STM32微控制器实现光电传感器的接口和数据处理
光电传感器在许多领域中被广泛应用,例如工业自动化、智能家居等。本文将介绍如何使用STM32微控制器实现光电传感器的接口和数据处理的方案,包括硬件设计、引脚配置、数据采集、滤波和阈值判断等关键步骤,并给出相应的代码示例。 一、引言 光…...
ELK企业级日志分析平台——kibana数据可视化
部署 新建虚拟机server5,部署kibana [rootelk5 ~]# rpm -ivh kibana-7.6.1-x86_64.rpm [rootelk5 ~]# cd /etc/kibana/[rootelk5 kibana]# vim kibana.ymlserver.host: "0.0.0.0"elasticsearch.hosts: ["http://192.168.56.11:9200"]i18n.local…...
Shell条件变量练习
1.算数运算命令有哪几种? (1) "(( ))"用于整数运算的常用运算符,效率很高 [rootshell scripts]# echo $((24*5**2/8)) #(( ))2452814 14 (2) "$[ ] "用于整数运算 [rootshell scripts]# echo $[24*5**2/8] #[ ]也可以运…...
【PHP】MySQL简介与MySQLi函数(含PHP与MySQL交互)
文章目录 一、MySQL简介二、MySQLi函数1. 开启mysqli扩展:2. PHP MySQLi扩展的常用函数 三、PHP与MySQL交互0. 准备1. 创建连接(mysqli_connect() )连接mysql语法 2. 选择数据库(mysqli_select_db())3. 在php中操作数据…...
vscode在Windows上安装插件提示错误xhr failed
问题描述: 在Windows下,在vscode里搜索扩展时发现无法搜索,报如下错:”Error while fetching extensions. XHR failed“。 问题定位: 在vscode界面下键入ctrlshiftp, 然后输入:Developer: T…...
SHAP(一):具有 Shapley 值的可解释 AI 简介
SHAP(一):具有 Shapley 值的可解释 AI 简介 这是用 Shapley 值解释机器学习模型的介绍。 沙普利值是合作博弈论中广泛使用的方法,具有理想的特性。 本教程旨在帮助您深入了解如何计算和解释基于 Shapley 的机器学习模型解释。 我…...
C++数据结构:图
目录 一. 图的基本概念 二. 图的存储结构 2.1 邻接矩阵 2.2 邻接表 三. 图的遍历 3.1 广度优先遍历 3.2 深度优先遍历 四. 最小生成树 4.1 最小生成树获取策略 4.2 Kruskal算法 4.3 Prim算法 五. 最短路径问题 5.1 Dijkstra算法 5.2 Bellman-Ford算法 5.3 Floyd-…...
「C++」红黑树的插入(手撕红黑树系列)
💻文章目录 📄前言红黑树概念红黑树的结构红黑树节点的定义红黑树的定义红黑树的调整 红黑树的迭代器迭代器的声明operator( )opeartor--( ) 完整代码 📓总结 📄前言 作为一名程序员相信你一定有所听闻红黑树的大名,像…...
2023年生肖在不同时间段的运势预测
随着信息技术的飞速发展,API已经成为了数据获取和交互的重要途径。很多网站和APP都在运用API来获取数据。今天我们来介绍一个十分有趣的API——《十二生肖运势预测API》,通过这个API,我们可以获取到每个生肖在不同时间段的运势预测࿰…...
ERRO报错
无法下载nginx 如下解决: 查看是否有epel 源 安装epel源 安装第三方 yum -y install epel-release.noarch NGINX端口被占用 解决: 编译安装的NGINX配置文件在/usr/local/ngin/conf 修改端口...
shiyan
import javax.xml.transform.Result; import java.util.Arrays; public class ParseText {//需要统计的字符串为private String text"Abstract-This paper presents an overview";private Result[] res;private int count;public ParseText(){resnew Result[100];cou…...
深度学习黎明时期的LeNet:揭开卷积神经网络的序幕
在深度学习的历史长河中,Yann LeCun 的 LeNet 是一个里程碑式的研究成果,它为后来的卷积神经网络(Convolutional Neural Networks,CNN)的发展奠定了基础。LeNet 的诞生标志着深度学习黎明时期的到来,为人工…...
跨越威胁的传说:揭秘Web安全的七大恶魔
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
【SpringCloud系列】@FeignClient微服务轻舞者
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
【数据库设计和SQL基础语法】--SQL语言概述--SQL的基本结构和语法规则(一)
一、SQL的基本结构 2.1 SQL语句的组成要素 SQL语句的组成要素 关键字(Keywords): 定义:SQL语句的基本操作命令,表示要执行的动作。例子:SELECT、INSERT、UPDATE、DELETE等。 标识符(Identifiers…...
使用oxylabs代理国外ip请求openai接口报错记录
报错提示: curl: (35) TCP connection reset by peer curl: (56) Recv failure: Connection reset by peer 这些报错都是因为curl版本过低(我的版本是curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.53.1 zlib/1.2.7 libidn/1.28 libssh2…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
