当前位置: 首页 > news >正文

【算法】缓存淘汰算法

目录

  • 1.概述
  • 2.代码实现
    • 2.1.FIFO
    • 2.2.LRU
    • 2.3.LFU
    • 2.4.Clock
    • 2.5.Random
  • 3.应用

1.概述

缓存淘汰策略是指在缓存容量有限的情况下,当缓存空间不足时决定哪些缓存项应当被移除的策略。缓存淘汰策略的目标是尽可能地保持缓存命中率高,同时合理地利用有限的缓存空间

需要注意的是,下面的代码实现只是对缓存淘汰算法的基本实现,在实际情况中,可以需要考虑更多的因素!

2.代码实现

2.1.FIFO

(1)FIFO (First-In-First-Out) 是一种基本的内存淘汰策略。其思路是按照元素的进入顺序来选择要淘汰的元素。具体来说,当有新的元素要加入到固定容量的缓存中时,如果缓存已满,就需要选择一个元素进行淘汰,以腾出空间存储新的元素。在 FIFO 策略中,选择被缓存时间最长的元素进行淘汰

(2)FIFO 策略维护一个队列,在每次新元素加入缓存时,将新元素添加到队列的末尾。当需要淘汰元素时,选择队列的头部元素作为淘汰对象,即最早进入缓存的元素。通过这种方式,始终保持最早进入缓存的元素在队列头部,最新进入缓存的元素在队列末尾。

(3)使用 FIFO 策略的好处是它的实现简单且执行效率高。然而,它没有考虑元素的访问频率或重要性等因素,只根据进入缓存的顺序来进行淘汰,可能会导致缓存中的数据不够优化。因此,在某些应用场景下,FIFO 策略可能不是最优选择,需要根据实际需求选择更复杂的内存淘汰策略。其具体代码实现如下:

class FIFOCache<K, V> {private int capacity;private Deque<K> queue;private Map<K, V> cache;//进行初始化操作public FIFOCache(int capacity) {this.capacity = capacity;this.queue = new ArrayDeque<>(capacity);this.cache = new HashMap<>(capacity);}//接收一个键 key 并返回相应的值,如果键不存在,则返回 nullpublic V get(K key) {return cache.getOrDefault(key, null);}//接收一个键 key 和一个值 value,并将它们存储在缓存中public void put(K key, V value) {if (!cache.containsKey(key)) {//如果缓存已满,将使用队列的 poll 方法移除最早加入的键if (queue.size() == capacity) {K oldestKey = queue.poll();cache.remove(oldestKey);}//然后将新的键加入队列的尾部queue.offer(key);}//将新的键值对加入缓存cache.put(key, value);}public V remove(K key) {//从队列中移除指定键queue.remove(key); // 从缓存中移除指定键并返回对应的值return cache.remove(key); }public void clear() {//清空队列queue.clear(); //清空缓存cache.clear(); }public int size() {return cache.size();}
}

2.2.LRU

参考 146.LRU 缓存这篇文章。

2.3.LFU

参考 460.LFU 缓存这篇文章。

2.4.Clock

(1)Clock 缓存淘汰算法是一种基于近似“最近未使用” (Not Recently Used) 策略的淘汰算法。该算法通过维护一个环形指针数组 (Clock),来判断缓存项是否被使用,从而进行淘汰决策。Clock 缓存淘汰算法的思路如下:

  • 对于每个缓存项,维护一个额外的访问位来标记缓存项是否被访问过。
  • 初始状态下,将所有缓存项的访问位都设置为 0。
  • 创建一个环形指针数组,数组中的每个槽位对应一个缓存项,并按照某种顺序排列。
  • 当需要淘汰一个缓存项时,根据指针指向的槽位判断:
    • 如果该槽位的访问位为 0,表示该缓存项最近未被使用,可以选择淘汰。
    • 如果该槽位的访问位为 1,表示该缓存项最近被使用过,将访问位置为 0,并将指针向后移动一位。
  • 重复第 4 步,直到找到一个访问位为 0 的槽位,将该缓存项置换出来,让出空间给新的缓存项。
  • 如果需要访问某个缓存项时,将其对应的访问位置为 1,表示该缓存项已被使用。

(2)Clock 缓存淘汰算法相对于经典的最近未使用 (LRU) 算法具有更低的时间和空间复杂度。它通过近似地追踪缓存项的访问状态来进行淘汰决策,适用于中小规模的缓存系统。

(3)然而,需要注意的是,Clock 算法可能出现缓存项的“反复使用”情况,即缓存项被不断地替换出去又被重新引入,这可能会影响缓存的命中率。因此,在实际应用中,需要根据具体场景和需求,综合考虑各个因素,选择合适的缓存淘汰策略。其具体代码实现如下:

class ClockCache<K, V> {//循环链表节点static class CircleListNode<K, V> {K key;V value;boolean accessFlag;CircleListNode<K, V> pre;CircleListNode<K, V> next;public CircleListNode() {}public CircleListNode(K key, V value) {this.key = key;this.value = value;}}private int capacity;//头节点private CircleListNode<K, V> dummyHead;private Map<K, CircleListNode<K, V>> cache;public ClockCache(int capacity) {this.capacity = capacity;this.dummyHead = new CircleListNode<>();this.dummyHead.next = this.dummyHead;this.dummyHead.pre = this.dummyHead;this.cache = new HashMap<>();}public V get(K key) {if (cache.containsKey(key)) {CircleListNode<K, V> node = cache.get(key);//将访问位设置为 truenode.accessFlag = true;return node.value;} else {return null;}}public void put(K key, V value) {if (cache.containsKey(key)) {CircleListNode<K, V> node = cache.get(key);//将访问位设置为 truenode.accessFlag = true;node.value = value;} else {if (cache.size() >= capacity) {//从最老的元素开始,此处直接从 head.next 开始,后续可以考虑优化记录这个 keyCircleListNode<K, V> node = this.dummyHead;boolean removeFlag = false;while (node.next != this.dummyHead) {//下一个元素node = node.next;if (!node.accessFlag) {//未访问,直接淘汰removeNode(node);System.out.println(node.key);removeFlag = true;break;} else {//设置当前 accessFlag 为 false,继续遍历下一个node.accessFlag = false;}}if (!removeFlag) {//如果循环一遍都没找到,直接取第一个元素即可CircleListNode<K, V> firstNode = this.dummyHead.next;System.out.println(firstNode.key);removeNode(firstNode);}}CircleListNode<K, V> newNode = new CircleListNode<>(key, value);newNode.accessFlag = true;CircleListNode<K, V> tail = dummyHead.pre;tail.next = newNode;newNode.pre = tail;newNode.next = dummyHead;dummyHead.pre = newNode;cache.put(key, newNode);}}public void remove(K key) {CircleListNode<K, V> node = cache.get(key);if (node != null) {cache.remove(key);removeNode(node);}}public void clear() {cache.clear();}public int size() {return cache.size();}private void removeNode(CircleListNode<K, V> node) {CircleListNode<K, V> pre = node.pre;CircleListNode<K, V> next = node.next;pre.next = next;next.pre = pre;cache.remove(node.key);}
}

2.5.Random

(1)Random(随机)内存淘汰算法的思想是基于随机选择的策略来进行缓存淘汰。该算法不依赖于缓存项的访问频率或时间等信息,而是通过随机选择一个缓存项进行淘汰,没有明确的优先级或规则。Random 内存淘汰算法的思想如下:

  • 当缓存空间不足时,需要淘汰一个缓存项。
  • 使用随机数生成器(如 Random 类)来生成一个随机索引,范围为缓存的容量。
  • 根据生成的随机索引,随机选择一个缓存项进行淘汰。
  • 被选择的缓存项被移除,让出空间给新的缓存项。

(2)随机选择的特点使得每个缓存项被淘汰的概率相等,没有明确的优先级,所有缓存项都有被淘汰的可能性。这种随机性的特点适用于一些无规律或无明确访问模式的缓存使用场景。然而,随机内存淘汰算法可能导致缓存命中率下降,因为被频繁访问的缓存项有可能被随机选中被淘汰,从而增加缓存不命中的概率。

因此,在选择淘汰算法时,需要根据具体应用场景和缓存使用模式来权衡各种算法的优劣,并选择适合的淘汰策略以达到最优的性能。

(3)其具体代码实现如下:

class RandomCache<K, V> {private int capacity;private List<K> keys;private Map<K, V> cache;private Random random;public RandomCache(int capacity) {this.capacity = capacity;this.keys = new ArrayList<>(capacity);this.cache = new HashMap<>(capacity);this.random = new Random();}//接收一个键 key 并返回相应的值,如果键不存在,则返回 nullpublic V get(K key) {return cache.getOrDefault(key, null);}public void put(K key, V value) {if (!cache.containsKey(key)) {//如果缓存已满,将使用 Random 对象的 nextInt 方法随机选择一个键索引并从列表中移除键if (keys.size() == capacity) {int index = random.nextInt(capacity);K randomKey = keys.remove(index);cache.remove(randomKey);}keys.add(key);}cache.put(key, value);}public V remove(K key) {if (cache.containsKey(key)) {//从列表中移除指定键keys.remove(key); //从缓存中移除指定键并返回对应的值return cache.remove(key);}return null;}public void clear() {keys.clear(); cache.clear(); }public int size() {return cache.size();}
}

3.应用

Redis 的缓存淘汰策略如下:

在这里插入图片描述
有关上面淘汰策略的一些具体说明如下:

  • noevction 是 Redis 的默认配置。当缓存被写满时,再有写请求进来,Redis 不再提供服务,直接返回错误。
  • LRULFU 算法是常见的淘汰算法,其具体细节可以参考 146.LRU 缓存、460.LFU 缓存这两篇文章。
  • random 指随机删除,相关的算法实现可以参考 380. O(1) 时间插入、删除和获取随机元素这篇文章。
  • volatile-ttl 策略:针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的数据越先被淘汰,即 ttl 越小的数据越优先被淘汰,这里的 ttl 指 Time to Live,即生存时间。

要想设置 Redis 的缓存淘汰策略,可以在其配置文件 redis.conf 中进行 maxmemory-policy 具体淘汰策略 的设置,例如设置淘汰策略为 volatile-lru

maxmemory-policy volatile-lru

相关文章:

【算法】缓存淘汰算法

目录 1.概述2.代码实现2.1.FIFO2.2.LRU2.3.LFU2.4.Clock2.5.Random 3.应用 1.概述 缓存淘汰策略是指在缓存容量有限的情况下&#xff0c;当缓存空间不足时决定哪些缓存项应当被移除的策略。缓存淘汰策略的目标是尽可能地保持缓存命中率高&#xff0c;同时合理地利用有限的缓存…...

接手项目要做的事项

总结&#xff1a;在接手别人的项目时&#xff0c;至少应该自己整理并绘画四个图 1、产品脑图&#xff1a;帮助你理解产品的功能&#xff1b; 2、UML时序图&#xff1a;帮助你源代码的核心技术实现&#xff1b; 3、整体业务泳道图&#xff1a;帮助你从整体上熟悉业务的流程&a…...

【Web】攻防世界Web_php_wrong_nginx_config

这题考察了绕过登录、目录浏览、后门利用 进来先是一个登录框&#xff0c;随便怎么输前端都直接弹窗 禁用js后再输入后登录 查看源码&#xff0c;好家伙&#xff0c;不管输什么都进不去 直接扫目录 访问/robots.txt 访问/hint.php 访问/Hack.php 抓包看一下 cookie里isLogin0…...

Flume采集Kafka并把数据sink到OSS

安装环境 Java环境, 略 (Flume依赖Java)Flume下载, 略Scala环境, 略 (Kafka依赖Scala)Kafak下载, 略Hadoop下载, 略 (不需要启动, 写OSS依赖) 配置Hadoop 下载JindoSDK(连接OSS依赖), 下载地址Github 解压后配置环境变量 export JINDOSDK_HOME/usr/lib/jindosdk-x.x.x expo…...

flutter,uni-app开发调试ios

一、申请ios开发者账号 二、ios开发者配置 ios 开发者需要配置的地方 https://developer.apple.com/account/resources/certificates/list Certificates&#xff08;证书&#xff09;: 作用&#xff1a; 证书用于对应用程序和开发者进行身份验证&#xff0c;确保安全性和可…...

MybatisBatchUtils功能介绍

MybatisBatchUtils 是一个 MyBatis 框架的工具类&#xff0c;主要用于简化 MyBatis 中批量操作的代码编写。该工具类封装了 MyBatis 中的批量操作方法&#xff0c;可以方便地进行批量插入、更新和删除等操作。 一般来说&#xff0c;使用 MyBatis 进行批量操作需要先设置 JDBC 驱…...

Flutter使用flutter_gen管理资源文件

pub地址&#xff1a; https://pub.dev/packages/flutter_gen 1.添加依赖 在你的pubspec.yaml文件中添加flutter_gen作为开发依赖 dependencies:build_runner:flutter_gen_runner: 2.配置pubspec.yaml 在pubspec.yaml文件中&#xff0c;配置flutter_gen的参数。指定输出路…...

vue3 setup语法糖,常用的几个:defineProps、defineEmits、defineExpose、

vue3和vue2组件之间传参的不同 <script setup> 是在单文件组件 (SFC) 中使用组合式 API 的编译时语法糖。 <script setup> 中的代码会在每次组件实例被创建的时候执行。 任何在 <script setup> 声明的顶层的绑定 (包括变量&#xff0c;函数声明&#xff0…...

JC/T 2087-2011建筑装饰用仿自然面艺术石检测

建筑装饰用仿自然面艺术石是指以硅酸盐水泥、轻质骨料为主要原料经浇筑成型的饰面装饰材料。 JC/T 2087-2011建筑装饰用仿自然面艺术石测试&#xff1a; 测试项目 测试方法 外观质量 GB/T 18601 尺寸偏差 GB/T 18601 体积密度 GB/T 9966.3 吸水率 GB/T 9966.3 压缩强…...

C语言——写一个简单函数,找两个数中最大者

#include <stdio.h>int max( int a, int b ) { return a>b ? a:b; }int main() { int a, b;printf("输入两个数:\n");scanf("%d %d", &a, &b);printf("max %d\n", max(a, b));return 0; }输出结果&#xff1a;...

机器学习中的混淆矩阵

混淆矩阵是用于评估分类模型性能的表格&#xff0c;它展示了模型在不同类别上的预测情况。对于二分类问题&#xff0c;混淆矩阵的构成如下&#xff1a; 假设有两个类别&#xff1a;正例&#xff08;Positive&#xff09;和负例&#xff08;Negative&#xff09;。 真正例&…...

QT基础实践之简易计算器

文章目录 简易计算器源码分享演示图第一步 界面设计第二步 设置槽第三步 计算功能实现 简易计算器 源码分享 链接&#xff1a;https://pan.baidu.com/s/1Jn5fJLYOZUq77eNJ916Kig 提取码&#xff1a;qwer 演示图 第一步 界面设计 这里直接用了ui界面&#xff0c;如果想要自己…...

南大通用 GBase 8s数据库级别权限

对于所有有权使用指定数据库的用户都必须赋予其数据库级别的用户权限。在GBase 8s 中&#xff0c;数据库级别的用户权限有三种&#xff0c;按权限从低到高排列依次为&#xff1a;CONNECT、RESOURCE、DBA。 1. CONNECT 这是级别最低的一种数据库级别用户权限。拥有该权限的用户…...

对话式数据需求激增,景联文科技提供高质量多轮对话数据定制采集标注服务

大模型的快速发展使得数据服务需求激增&#xff0c;产品整体处于供不应求状态。对话式数据集成为当下需求热点&#xff0c;人们对于更复杂、更真实的多轮对话数据需求不断增加&#xff0c;定制化服务占据市场需求主流。 通过对多轮对话数据的训练&#xff0c;模型可以更好地理解…...

python第1天之常识及环境安装

前言&#xff1a; 当谈到编程语言的流行度时&#xff0c;Python绝对是其中之一。Python是一种高级编程语言&#xff0c;其语法简单易懂&#xff0c;适用于各种不同的应用领域&#xff0c;包括Web开发、数据分析、人工智能等。在本文中&#xff0c;我们将探讨一些关于Pyth…...

中国高纯石英砂行业市场研究与投资前景报告(2024版)

内容简介&#xff1a; 高纯石英砂纯度高、品质好&#xff0c;生产的石英制品具有耐高温、耐腐蚀、低热膨胀性、高度绝缘性和透光性等优异的物理化学属性&#xff0c;被广泛用于光伏、电子、高端电光源、薄膜材料、国防科技等领域&#xff0c;是高端制造行业不可替代的原辅材料…...

遭到美国做空机构“灰熊”做空后,人工智能公司商汤科技股价暴跌

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;在遭到美国做空机构Grizzly Research&#xff08;灰熊&#xff09;指控夸大收入后&#xff0c;商汤科技的股价在周二一度下跌了9.7%。 Grizzly Research在周二发布的一份报告中称&#xff0c;商汤…...

异常数据检测 | Python实现孤立森林(IsolationForest)异常检测

孤立森林(IsolationForest)异常检测 IsolationForest[6]算法它是一种集成算法(类似于随机森林)主要用于挖掘异常(Anomaly)数据,或者说离群点挖掘,总之是在一大堆数据中,找出与其它数据的规律不太符合的数据。该算法不采样任何基于聚类或距离的方法,因此他和那些基于距离的的…...

营销互动类小游戏策划与开发

制定并开发一款营销互动小游戏需要经过一系列策划和实施步骤。以下是一个基本的流程&#xff0c;你可以根据自己的具体情况进行调整&#xff1a; 明确目标&#xff1a;确定小游戏的目标&#xff0c;是提高品牌知名度、增加销售、促进用户互动还是其他目标。 了解目标受众&…...

主机的容器化技术介绍

☞ ░ 前往老猿Python博客 ░ https://blog.csdn.net/LaoYuanPython 一、什么是容器 容器是一个标准化的单元&#xff0c;是一种轻量级、可移植的软件打包技术&#xff0c;容器将软件代码及其相关依赖打包&#xff0c;使应用程序可以在任何计算介质运行。例如开发人员在自己的…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...