算法通关第十三关-青铜挑战数学基础问题
数组元素积的符号
描述 :
已知函数 signFunc(x)
将会根据 x
的正负返回特定值:
- 如果
x
是正数,返回1
。 - 如果
x
是负数,返回-1
。 - 如果
x
是等于0
,返回0
。
给你一个整数数组 nums
。令 product
为数组 nums
中所有元素值的乘积。
题目 :
LeetCode 1822.数组元素积的符号 :
1822. 数组元素积的符号
分析 ;
我们只需要看有多少个负数,最后乘积的符号就能够判断 :
解析 :
class Solution {public int arraySign(int[] nums) {int count = 1;for(int i = 0;i < nums.length;i++){if(nums[i] == 0){return 0;}else if(nums[i] < 0){count = -count;}}return count;}
}
阶乘0的个数
描述 :
给定一个整数 n
,返回 n!
结果中尾随零的数量。
题目 :
LeetCode 阶乘尾零 :
面试题 16.05. 阶乘尾数
172. 阶乘后的零
分析 :
这个题如果硬算,一定会超时,其实我们可以统计有多少个0,实际上是统计 2和5一起出现多少对,不过因为 2 出现的次数一定大于 5 出现的次数,因此我们只需要检查 5 出现的次数就好了,那么在统计过程中,我们只需要统计 5、10、15、25、 ...5^n 这样5 的整数倍项就好了,最后累加起来,就是多少0。代码就是:
解析 :
class Solution {public int trailingZeroes(int n) {int count = 0;for(long num = 5; n / num > 0;num *= 5){count += n / num;}return count;}
}
整数反转
描述 :
给你一个 32 位的有符号整数 x
,返回将 x
中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1]
,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
题目 :
LeetCode 7.整数反转 :
7. 整数反转
分析 :
力扣官方题解
解析 :
class Solution {public int reverse(int x) {int rev = 0;while (x != 0) {if (rev < Integer.MIN_VALUE / 10 || rev > Integer.MAX_VALUE / 10) {return 0;}int digit = x % 10;x /= 10;rev = rev * 10 + digit;}return rev;}
}
回文数
描述 :
给你一个整数 x
,如果 x
是一个回文整数,返回 true
;否则,返回 false
。
回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
- 例如,
121
是回文,而123
不是。
题目 :
LeetCode 9.回文数 :
9. 回文数
分析 :
为了避免数字反转可能导致的溢出问题,只反转 int 数字的一半
毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
解析 :
class Solution {public boolean isPalindrome(int x) {if(x < 0 || (x % 10 == 0 && x != 0)){return false;}int res = 0;while(x > res){res = res * 10 + x % 10;x /= 10;}return x == res || x == res / 10;}
}
七进制数
描述 :
给定一个整数 num
,将其转化为 7 进制,并以字符串形式输出。
题目 :
LeetCode 504. 七进制数 :
504. 七进制数
分析 :
我们先通过二进制想一下7进制数的变化特征。在二进制中,先是0,然后是1,而2就是10(2),3就是11(2),4就是(100)。
同样在7进制中,计数应该是这样的 :
100 / 7=14 余 2
14 / 7=2 余0
2 / 7=0 余2
向遍历每次的余数,依次是 2、0、2,因此十进制数 100 转成七进制数是202 。如果num<0,则先对num 取绝对值,然后再转换即可。使用代码同样可以实现该过程,需要注意的是如果单纯按照整数来处理会非常麻烦,既然题目说以字符串形式返回,那我们干脆直接用字符串类,
解析 :
class Solution {public String convertToBase7(int num) {StringBuilder sb = new StringBuilder();int flag = 0;if(num < 0){num *= -1;flag = 1;}do{sb.append(num % 7 + "");num /= 7;}while(num > 0);if(flag == 1){sb.append("-");}return sb.reverse().toString();}
}
这期就到这里 , 下期见!
相关文章:

算法通关第十三关-青铜挑战数学基础问题
数组元素积的符号 描述 : 已知函数 signFunc(x) 将会根据 x 的正负返回特定值: 如果 x 是正数,返回 1 。如果 x 是负数,返回 -1 。如果 x 是等于 0 ,返回 0 。 给你一个整数数组 nums 。令 product 为数组 nums 中所有元素值的…...

如何使用 Freepik 的 Pikaso 工具来画图
Freepik 是一个提供高质量的照片、矢量图像、插图以及 PSD 文件素材的网站https://www.freepik.com/您可以在这里找到各种风格和主题的素材,用于您的创意项目。Freepik 还提供了一个名为 Pikaso 的在线画图工具,让您可以轻松地创建和编辑您自己的图像&am…...

一个没正常处理tcp对端关闭的bug
最近使用自研的http client时发现一个问题,对端在发送响应数据之后立即调用close关闭了连接,我这没有调用到响应的回调,而是调用到了连接关闭的回调。对端延迟一会再关闭连接就没问题,用curl去访问也是正常的。经过排查是没有正确…...

什么是JDK
JDK是Java的开发工具,全称为Java Development Kit,包含Java运行环境,Java工具,Java基础类库三大部分。 Java运行环境 Java运行环境,也就是JRE,全称为Java Runtime Environment ,其中包含JVM&…...

积分表二(高等数学同济版中所有的积分公式)
文章目录 含有 x − a x a \sqrt{\pm \frac{x-a}{xa}} xax−a 或者 ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (x−a)(b−x) 的积分含有三角函数函数的积分含有反三角函数的积分 (其中 a > 0 a>0 a>0)含有指数函数的积分含有对数函数的积分含有双曲函数的…...

Golang数据类型(数字型)
Go数据类型(数字型) Go中数字型数据类型大致分为整数(integer)、浮点数(floating point )和复数(Complex)三种 整数重要概念 整数在Go和Python中有较大区别,主要体现在…...

【JVM系列】- 穿插·对象的实例化与直接内存
对象的实例化与直接内存 😄生命不息,写作不止 🔥 继续踏上学习之路,学之分享笔记 👊 总有一天我也能像各位大佬一样 🌝分享学习心得,欢迎指正,大家一起学习成长! 文章目录…...

【C++干货铺】继承 | 多继承 | 虚继承
个人主页点击直达:小白不是程序媛 C系列专栏:C干货铺 代码仓库:Gitee 目录 继承的概念及定义 继承的概念 继承的定义 继承基类成员访问方式的变化 基类和派生类的赋值转化 继承中的作用域 派生类的默认成员函数 构造函数 拷贝构造…...

【ARM CoreLink 系列 8.1 -- SMMU 详细介绍-STE Entry 详细介绍 1】
请阅读【ARM CoreLink 文章专栏导读】 上篇文章:【ARM CoreLink 系列 8 – SMMU 详细介绍-上半部】 文章目录 ARM SMMU STE ENTRY1.1 STE ENTRYWORD[0]1.1.1 S1ContexPtr1.1.2 S1Fmt1.1.3 Config1.1.4 V(Valid)1.2 STE ENTRY WORD[1]1.2.1 S1CDMax1.2.2 S1ContextPtr1.3 STE E…...

高防CDN与WAF防火墙的协同防护:构筑网络安全堡垒
随着互联网的不断发展,网络安全威胁也日益增多,而网站作为企业在数字领域的门户,面临的风险更加复杂多样。在构筑网络安全堡垒的过程中,高防CDN(Content Delivery Network)与WAF(Web Applicatio…...

golang strings包的基本操作
文章目录 golang 的字符串函数EqualFoldHasPrefixHasSuffixContainsContainsRuneContainsAnyCountIndexIndexByteIndexRuneIndexAnyIndexFuncLastIndexLastIndexAnyLastIndexFuncTitleToLowerToLowerSpecialToUpperToUpperSpecialToTitleToTitleSpecialRepeatReplaceMapTrimTri…...

高效解决在本地打开可视化服务器端的tensorboard
文章目录 问题解决方案 问题 由于连着远程服务器构建模型,但是想在本地可视化却做不到,不要想当然天真的以为CTRLC点击链接http://localhost:6006就真能在本地打开tensorboard。你电脑都没连接服务器,只是pycharm连上了而已 解决方案 你需要…...

Spring Boot Actuator 2.2.5 基本使用
1. pom文件 ,添加 Actuator 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> 2.application.properties 文件中添加以下配置 …...

字符串相似度匹配算法_莱茵斯坦距离算法
package day0330;public class LevenshteinDistanceUtil {public static void main(String[] args) {String a "WN64 F98";String b "WN64 F98 ";System.out.println("相似度:" getSimilarityRatio(a, b));}/*** 获取两字符串的相似度* * par…...

【EI会议征稿】第九届电气、电子和计算机工程研究国际学术研讨会 (ISAEECE 2024)
第九届电气、电子和计算机工程研究国际学术研讨会 (ISAEECE 2024) 2024 9th International Symposium on Advances in Electrical, Electronics and Computer Engineering 第九届电气、电子和计算机工程研究国际学术研讨会(ISAEECE 2024)将于2024年3月1-5日在南…...

Maven Helper插件——实现一键Maven依赖冲突问题
总结/朱季谦 业余在一个SpringBoot项目集成Swagger2时,启动过程一直出现以下报错信息—— An attempt was made to call a method that does not exist. The attempt was made from the following location: springfox.documentation.schema.DefaultModelDepe…...

理解位运算的规则
关卡名 理解位运算的规则 我会了✔️ 内容 1.理解位运算的基本规则 ✔️ 2.理解移位的原理以及与乘除的关系 ✔️ 3.掌握位运算的常用技巧 ✔️ 在学习位操作之前,我们先明确数据在计算机中怎么表示的。我们明确原码、反码和补码的概念和表示方法,之…...

Android Bitmap 使用Vukan、RenderEffect、GLSL实现模糊
文章目录 Android Bitmap 使用Vukan、RenderEffect、GLSL实现模糊使用 RenderEffect 模糊使用 Vukan 模糊使用 GLSL 模糊RS、Vukan、RenderEffect、GLSL 效率对比 Android Bitmap 使用Vukan、RenderEffect、GLSL实现模糊 本文首发地址 https://blog.csdn.net/CSqingchen/articl…...

Vue H5页面长按保存为图片
安装依赖:npm install html2canvas -d <template><div class"index"><div id"captureId" class"capture" v-show"firstFlag"><ul><li>1</li><li>2</li><li>3<…...

【Web】UUCTF 2022 新生赛 个人复现
目录 ①websign ②ez_rce ③ez_upload ④ez_unser ⑤ezsql ⑥ezpop ⑦funmd5 ⑧phonecode ⑨ezrce ①websign 右键打不开,直接抓包发包看源码 ②ez_rce “反引号” 在PHP中会被当作SHELL命令执行 ?codeprintf(l\s /); ?codeprintf(ta\c /ffffffffffl…...

设置python下载包代理
使用场景 正常网络情况下我们安装如果比较多的python包时,会选择使用pip install -r requirements.txt -i https://pypi.douban.com/simple --trusted-hostpypi.douban.com这种国内的镜像来加快下载速度。 但是,当这台被限制上网时(公司安全…...

nginx 配置前端项目添加https
可申请阿里云免费证书 步骤省略… nginx 配置 server {listen 8050; #默认80端口 如果需要所有访问地址都是https 需要注释listen 8443 ssl; #https 访问的端口 ,默认443server_name 192.168.128.XX; #域名 或 ip# 增加ssl#填写证书文件…...

人群计数CSRNet的pytorch实现
本文中对CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes(CVPR 2018)中的模型进行pytorch实现 import torch;import torch.nn as nn from torchvision.models import vgg16 vggvgg16(pretrained1)import…...

【HTTP协议】简述HTTP协议的概念和特点
🎊专栏【网络编程】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🥰欢迎并且感谢大家指出小吉的问题 文章目录 🌺概念🌺特点🎄请求协议🎄响应协议…...

经典神经网络——AlexNet模型论文详解及代码复现
一、背景 AlexNet是在2012年由Alex Krizhevsky等人提出的,该网络在2012年的ImageNet大赛上夺得了冠军,并且错误率比第二名高了很多。Alexnet共有8层结构,前5层为卷积层,后三层为全连接层。 论文地址:ImageNet Classif…...

flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级
flutter开发实战-轮播Swiper更改Custom_layout样式中Widget层级 在之前的开发过程中,需要实现卡片轮播效果,但是卡片轮播需要中间大、两边小一些的效果,这里就使用到了Swiper。具体效果如视频所示 添加链接描述 这里需要的效果是中间大、两边…...

【Flutter】graphic图表实现自定义tooltip
renderer graphic中tooltip的TooltipGuide类提供了renderer方法,接收三个参数Size类型,Offset类型,Map<int, Tuple>类型。可查到的文档是真的少,所以只能在源码中扒拉例子,做符合需求的修改。 官方github示例 …...

手机上的记事本怎么打开?安卓手机通用的记事本APP
有不少上班族发现,自己想要在电脑上随手记录一些工作文字内容,直接使用电脑上的记事本工具来编辑文字是比较便捷的。但是如果想要在手机上记录文字内容,就找不到手机上的记事本了。那么手机上的记事本怎么打开?安卓手机通用的记事…...

一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁
目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式(Bridge)3.2 Host 模式3.3 无网络模式(None)3.4 容器模式(Container) 4 Docker Network 命令及用法4.1 docker network ls4.2 …...

前端OFD文件预览(vue案例cafe-ofd)
0、提示 下面只有vue的使用示例demo ,官文档参考 cafe-ofd - npm 其他平台可以参考 ofd - npm 官方线上demo: ofd 1、安装包 npm install cafe-ofd --save 2、引入 import cafeOfd from cafe-ofd import cafe-ofd/package/index.css Vue.use(cafeOfd) 3、使…...