MySQL 学习笔记(刷题篇)
SQL进阶挑战
聚合分组查询
SQL123
select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1)
as clip_avg_score
from examination_info as ei, exam_record as er
where ei.exam_id = er.exam_id
and ei.tag = 'SQL'
and ei.difficulty = 'hard'
and er.score is not null;
SQL124
IF(expr1 , expr2 , expr3),expr1的值为TRUE 返回 expr2,否则返回 expr3
使用 distinct 是需要考虑 null 的,它会把 null 也算成一种情况
但是使用 count(字段) 是不用考虑 null 的,它不会计 null 为一种情况
select count(id) as total_pv,
count(submit_time) as complete_pv,
count(distinct if(submit_time is not null, exam_id, null)) as complete_exam_cnt
from exam_record
select count(id) as total_pv,
count(submit_time) as complete_pv,
count(distinct exam_id and score is not null) as complete_exam_cnt
from exam_record
SQL125
# 这样写为什么就错?
select min(score) as min_score_over_avg
from exam_record #这样写没有保证查询的试卷类型是SQL
where score >= (select avg(score)from exam_record as er , examination_info as eiwhere ei.tag = 'SQL'and ei.exam_id = er.exam_idand er.score is not null
);
# correct
select min(score) as min_score_over_avg
from exam_record as er , examination_info as ei
where ei.tag = 'SQL'
and ei.exam_id = er.exam_id
and er.score is not null
and score >= (select avg(score)from exam_record as erwhere er.exam_id = ei.exam_idand er.score is not null
);
SQL126
题目:按年月进行分组,统计每组的用户id个数(也就是这个月有多少活跃用户),统计每组的用户活跃天数的平均值(总天数/总人数)
总天数计算方法: ∑ i = 1 i = l a s t − u s e r 第 i 个用户一个月内的登录天数之和 \sum_{i=1}^{i=last-user} 第i个用户一个月内的登录天数之和 ∑i=1i=last−user第i个用户一个月内的登录天数之和
DATE_FORMAT(date,fmt) 按照字符串 fmt 格式化日期 date 值
YEAR(date) / MONTH(date) / DAY(date) 返回具体的日期值
count( distinct uid, date_format(submit_time, '%y%m%d') ),这里的知识点:count函数内本只能接收一个参数,distinct 修饰是所有字段的,并不是修饰一个字段
语句含义:去掉一个用户在一天内的多次登录计数的重复计数,保证如果同一用户在同一天进行了多次活动,只有一次会被计数。
select date_format(submit_time, '%Y%m') as month, # %Y四位年份,%m两位数字月份round( count(distinct uid, date_format(submit_time, '%y%m%d') ) / count(distinct uid) , 2) as avg_active_days,count(distinct uid) as mau #统计组内不同用户id数量
from exam_record
where submit_time is not null
and year(submit_time) = 2021
group by date_format(submit_time, '%Y%m') # 按照年月分组
SQL127
select date_format(submit_time, '%Y%m') as submit_month,count(distinct uid, submit_time) as month_q_cnt,round(count(distinct uid, submit_time) / max(DAY(LAST_DAY(submit_time))) #这里必须用一个聚合函数,由于汇总时的天数按31算,因此用max最为合适,day+lasy_day一起得到当月的天数, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021' #过滤字段写到分组前
group by submit_monthunionselect '2021汇总' as submit_month,
count(distinct uid, submit_time) as month_q_cnt,
round(count(distinct uid, submit_time) / 31, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021'order by submit_month;
COALESCE 是一个函数,coalesce (expression_1, expression_2, …,expression_n) ,依次检验,返回第一个不是 null 的值
MySQL5.7之后,sql_mode中ONLY_FULL_GROUP_BY模式默认设置为打开状态。
ONLY_FULL_GROUP_BY的语义就是确定select target list中的所有列的值都是明确语义,因此这里的coalesce是不好使的,可以通过any_value()函数来抑制ONLY_FULL_GROUP_BY值被拒绝,any_value()会选择被分到同一组的数据里第一条数据的指定列值作为返回数据
GROUP BY中使用WITH ROLLUP
WITH ROLLUP,使用 WITH ROLLUP 关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和
注意:当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。
SELECTany_value(coalesce(DATE_FORMAT(submit_time,"%Y%m"),'2021汇总')) as submit_month,count(submit_time) as month_q_cnt,# 因为汇总除的数也是31,因此这里取max聚合round(count(submit_time) / max(day(last_day(submit_time))),3) as avg_day_q_cnt
FROM practice_record
WHERE year(submit_time) = '2021'
GROUP BY date_format(submit_time,"%Y%m") with rollup;
SQL 128
使用 count() 函数实现条件统计的基础是:对于值为NULL的记录不计数,利用这个性质我们可以轻松统计出值不为 NULL 的记录,再统计总记录,即可得到值为 NULL 的记录。
# 统计num大于200的记录
select count(num > 200 or null) from a;
# or null 作用就是当条件不满足时,函数变成了count(null)不会统计数量
# 但是 num > 200 这个条件不成立时的 false 是会被统计到的
GROUP_CONCAT() 函数是mysql中非常实用的聚合函数,将给分组内的值连接为一个字符串。其完整语法:
GROUP_CONCAT([DISTINCT] 要连接的字段 [ORDER BY 排序字段 ASC/DESC] [SEPARATOR ‘分隔符’])
select uid,count(uid) - count(submit_time) as incomplete_cnt,count(submit_time) as complete_cnt,group_concat(distinct date_format(start_time, '%Y-%m-%d'), ':', tagOrder BY start_time ASC #排序字段SEPARATOR ';') as detail
from exam_record as er
inner join examination_info as ei
on er.exam_id = ei.exam_id
where year(start_time) = '2021' #过滤字段写到分组前
group by uid
having incomplete_cnt < 5 and incomplete_cnt > 1
and complete_cnt >= 1
order by incomplete_cnt desc;
多表查询
SQL 129
先考虑简单的,找出 “当月均完成试卷数”不小于3的用户们,然后按 tag 分组统计存在 start_time 的作答记录个数即可
select tag, count(start_time) as tag_cnt
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idgroup by uid, date_format(start_time, '%Y%m')having count(date_format(submit_time, '%Y%m')) >= 3
)
group by tag
order by tag_cnt desc;
SQL 130
select ei.exam_id as exam_id,count(distinct uid) as uv,# round(avg(score) ,1) as avg_scoreround(sum(score) / count(score) , 1) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where date_format(start_time, '%Y%m%d') in ( # 时间select date_format(release_time, '%Y%m%d') # 先弄出SQL试卷的发出的时间字段from examination_infowhere tag = 'SQL'
)
and uid in ( # 用户select uid # 再弄出等级大于5的用户的uidfrom user_infowhere level > 5
)
and tag = 'SQL' # SQL试卷
group by ei.exam_id #所有的SQL试卷按exam_id分组
order by uv desc, avg_score;
SQL 131
select level, count(level) as level_cnt
from user_info as ui, (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idwhere tag = 'SQL' && score > 80
) as tmp
where ui.uid = tmp.uid
group by level
order by level_cnt desc;
SQL 132
再套一个 select 来使得子查询的排序独立
select * from (
select exam_id as tid, count(distinct uid) as uv,count(start_time) as pv
from exam_record
group by exam_id
order by uv desc, pv desc
) as t1unionselect * from (
select question_id as tid,count(distinct uid) as uv,count(submit_time) as pv
from practice_record
group by question_id
order by uv desc, pv desc
) as t2
SQL 133
TIME_TO_SEC() 将时间差转换为秒
select uid, 'activity1' as activity
from exam_record
group by uid
having min(score) >= 85unionselect uid, 'activity2' as activity
from examination_info as ei
inner join exam_record as er
on er.exam_id = ei.exam_id
where score > 80
and difficulty = 'hard'
and TIME_TO_SEC(timediff(submit_time, start_time)) < duration * 30order by uid;
其他操作
SQL 146
select uid,floor(avg(any_value(coalesce(score, 0)))) as avg_score,round(avg(if(submit_time is not null, timestampdiff(minute, start_time, submit_time), duration)), 1) as avg_time_took
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where difficulty = 'hard'
and uid in (select uidfrom user_infowhere level = 0
)
group by uid
SQL 147
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and uid in (select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109'union select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109'
)
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and (uid in(select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109')or uid in(select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109')
)
SQL 148(正则表达式)
用正则表达式匹配纯数字或者中间纯数字
select uid, er.exam_id,round(avg(score) ,0) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom user_infowhere nick_name regexp '^牛客[0-9]+号$'or nick_name regexp '^[0-9]+$'
)
and ei.exam_id in (select exam_idfrom examination_infowhere tag regexp '^[Cc]'
)
and score is not null
group by uid, exam_id
order by uid, avg_score
SQL 149(WITH AS)
比较复杂的一个题,需要用 WITH AS 存一下查询
with t as (select ui.uid as uid,count(start_time) - count(submit_time) as incomplete_cnt,round(if(count(start_time) - count(submit_time) > 0,(count(start_time) - count(submit_time)) / count(start_time),0),3) as incomplete_rate,level,count(start_time) as total_cnt # 作答个数from user_info as uileft join exam_record as eron ui.uid = er.uidgroup by uid
)select uid, incomplete_cnt, incomplete_rate
from t
where exists(select uid from t where level = 0 and incomplete_cnt > 2
)
and level = 0
union
select uid, incomplete_cnt, incomplete_rate
from t
where not exists (select uid from t where level = 0 and incomplete_cnt > 2
)
and total_cnt > 0 # 有作答记录的用户
order by incomplete_rate
SQL150(CASE WHEN THEN)
很烂但有用的代码
select ui.level,case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end as score_grade,round(count( case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end) / num, 3) as ratio
from exam_record as er, user_info as ui, (select level, count(level) as numfrom exam_record as erinner join user_info as uion er.uid = ui.uidwhere score is not nullgroup by levelorder by level desc
) as tmp
where er.uid = ui.uid
and tmp.level = ui.level
and score is not null
group by level, score_grade
order by level desc, ratio desc
SQL 152
select er.uid, level, register_time, score as max_score
from exam_record as er
inner join user_info as ui
on er.uid = ui.uid
where exam_id in ( # 把exam_record筛的只剩下job为算法的人做的算法试卷记录select exam_idfrom examination_infowhere tag = '算法'
)
and er.uid in (select uidfrom user_infowhere job = '算法'
)
and score is not null # 还得做完
order by score desc
limit 6, 3;
SQL 153(substring_index)
substring_index(str,delim,count),str:要处理的字符串,delm:分隔符
SELECT exam_id,substring_index(tag, ',', 1) AS tag,substring_index(substring_index(tag, ',', 2), ',', -1) AS difficulty,substring_index(tag, ',', -1) AS duration
FROM examination_info
WHERE tag LIKE '%,%';
SQL 154(IF)
简单的 IF 应用
select uid, (if(char_length(nick_name) > 13, concat(substring(nick_name, 1, 10), '...'),nick_name)
) as nick_name
from user_info
where char_length(nick_name) > 10;
SQL 155
这个题写的我脑子有点乱
select t1.tag, t2.total_num
from (select tag, num # 查询试卷作答数小于3的exam_id对应的tag和个数from examination_info as ei, ( select exam_id, count(exam_id) as num #按exam_id分组,并统计个数from exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_id # 多表查询and num < 3
) as t1, (select tag, sum(num) as total_num #按tag分类,把大写的tag聚合起来统计个数from examination_info as ei, (select exam_id, count(exam_id) as numfrom exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_idgroup by tag
) as t2
where upper(t1.tag) = t2.tag # 小写的t1.tag匹配大写的t2.tag
and t1.tag != t2.tag
相关文章:
MySQL 学习笔记(刷题篇)
SQL进阶挑战 聚合分组查询 SQL123 select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1) as clip_avg_score from examination_info as ei, exam_record as er where ei.exam_id er.exam_id and ei.tag SQL and ei.diffi…...
windows系统如何配置yarn环境变量
启动前端项目,突然遇到报错: 原因在于没有安装yarn,或没有配置环境变量。 全局安装 yarn 可在vsCode中输入,也可在命令行输入(winR,输入cmd) npm install -g yarn添加环境变量 找到yarn的安…...
视频中的文字水印怎么去除?这三招学会轻松去视频水印
短视频与我们生活,工作息息相关,日常在在刷短视频时,下载保存后发现带有文字logo水印,如果直接拿来进行二次创作,不仅影响观看效果,平台流量还会受限制。怎么去除视频中的文字水印就成为了当下热门话题之一…...
Java项目学生管理系统二查询所有
学生管理 近年来,Java作为一门广泛应用于后端开发的编程语言,具备了广泛的应用领域和丰富的开发资源。在前几天的博客中,我们探讨了如何搭建前后端环境,为接下来的开发工作打下了坚实的基础。今天,我们将进一步扩展我…...
27.Spring如何避免在并发下获取不完整的Bean?
Spring如何避免在并发下获取不完整的Bean? 1、为什么获取不到完整的Bean? 我们知道, 如果spring容器已经加载完了, 那么肯定所有bean都是完整的了, 但如果, spring没有加载完, 在加载的过程中, 构建bean就有可能出现不完整bean的情况 2、如何解决读取到不完整bean的问题. …...
浅析SD-WAN企业组网部署中简化网络运维的关键技术
网络已经成为现代企业不可或缺的基础设施,它为企业提供了连接全球的桥梁。随着全球化和数字化转型的加速推进,企业面临着越来越多的网络挑战和压力。传统的网络组网方式往往无法满足企业规模扩大、分支机构增多、上云服务等需求,导致网络性能…...
【Rust】快速教程——自定义类型、数字转枚举、Cargo运行
前言 超过一定的年龄之后,所谓人生,无非是一个不断丧失的过程而已。宝贵的东西,会像梳子豁了齿一样从手中滑落下去。你所爱的人会一个接着一个,从身旁悄然消逝。——《1Q84》 \;\\\;\\\; 目录 前言自定义类型数字转枚举Cargo.tom…...
python 实现 AIGC 大语言模型中的概率论:生日相同问题的代码场景模拟
对深度学习本质而言,它实际上就是应用复杂的数学模型对输入数据进行建模,最后使用训练好的模型来预测或生成新的数据,因此深度学习的技术本质其实就是数学。随着大语言模型的发展,人工智能的数学本质被进一步封装,从业…...
SD-WAN组网中的CPE及云服务CPE部署方法
什么是CPE? CPE全称为Customer Premises Equipment,即客户端设备,在SD-WAN中通常为路由器,部署在中心点和分支上,提供连接和路由、协议转换、流量监控等功能。一般可分为硬件CPE和虚拟化CPE(virtual CPE&a…...
理解BatchNormalization层的作用
深度学习 文章目录 深度学习前言一、“Internal Covariate Shift”问题二、BatchNorm的本质思想三、训练阶段如何做BatchNorm四、BatchNorm的推理(Inference)过程五、BatchNorm的好处六、机器学习中mini-batch和batch有什么区别 前言 Batch Normalization作为最近一年来DL的重…...
uniapp实现文件预览过程
H5实现预览 <template><iframe :src"_url" style"width:100vw; height: 100vh;" frameborder"0"></iframe> </template> <script lang"ts"> export default {data() {return {_url: ,}},onLoad(option…...
深度学习-学习笔记记录
1、点云语义分割方法分类 分为5类:点、二维投影、体素、融合、集成 2、融合与集成的区别 融合: 概念:主要是将不同来源、类型的模型,例如深度学习、传统机器学习等,的结果或特征进行结合,以得到一个更好的模…...
程序员养生之道:延寿不忘初心——延寿必备
文章目录 每日一句正能量前言如何养生饮食篇运动篇休息篇后记 每日一句正能量 现代社会已不是大鱼吃小鱼的年代,而是快鱼吃慢鱼的年代。 前言 在IT行业中,程序员是一个重要的职业群体。由于长时间的繁重编程工作,程序员们常常忽略了身体健康…...
使用Docker安装部署Swagger Editor并远程访问编辑API文档
文章目录 Swagger Editor本地接口文档公网远程访问1. 部署Swagger Editor2. Linux安装Cpolar3. 配置Swagger Editor公网地址4. 远程访问Swagger Editor5. 固定Swagger Editor公网地址 Swagger Editor本地接口文档公网远程访问 Swagger Editor是一个用于编写OpenAPI规范的开源编…...
Nacos 2.X核心架构源码剖析
概述 注册中心并发处理,1.4.x 写时复制,2.1.0 读写分离;nacos 一般使用 AP 架构,即临时实例,1.4.x 为 http 请求,2.1.0 优化为 gRPC 协议;源码中使用了大量的事件通知机制和异步定时线程池&…...
C语言--每日选择题--Day31
第一题 1. 下面程序 i 的值为() int main() {int i 10;int j 0;if (j 0)i; elsei--; return 0; } A:11 B:9 答案及解析 B if语句中的条件判断为赋值语句的时候,因为赋值语句的返回值是右操作数; …...
chrome vue devTools安装
安装好后如下图所示: 一:下载vue devTools 下载链接https://download.csdn.net/download/weixin_44659458/13192207?spm1001.2101.3001.6661.1&utm_mediumdistribute.pc_relevant_t0.none-task-download-2%7Edefault%7ECTRLIST%7EPaid-1-13192207…...
Spring Security 6.x 系列(7)—— 源码分析之Builder设计模式
一、Builder设计模式 WebSecurity、HttpSecurity、AuthenticationManagerBuilder 都是框架中的构建者,把他们放到一起看看他们的共同特点: 查看AuthenticationManagerBuilder的继承结构图: 查看HttpSecurity的继承结构图: 查看W…...
PyQt6 中自定义浮点型滑块类
介绍: 在PyQt6中,滑块(Slider)是常用的用户界面元素之一,用于选择数值范围。然而,有时候我们可能需要使用浮点数值,而标准的滑块仅支持整数。为了解决这个问题,我们可以创建一个自定…...
笔记,B+树
B树面对的场景,是一个有10亿行的表,希望某一列是有序的。这么大的数据量,内存里放不下,需要放在硬盘里。结果,原本运行于内存的二叉树,就升级为B树了。 在二叉树中,每个节点存储着一个数字&…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
