MySQL 学习笔记(刷题篇)
SQL进阶挑战
聚合分组查询
SQL123
select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1)
as clip_avg_score
from examination_info as ei, exam_record as er
where ei.exam_id = er.exam_id
and ei.tag = 'SQL'
and ei.difficulty = 'hard'
and er.score is not null;
SQL124
IF(expr1 , expr2 , expr3)
,expr1的值为TRUE 返回 expr2,否则返回 expr3
使用 distinct 是需要考虑 null 的,它会把 null 也算成一种情况
但是使用 count(字段) 是不用考虑 null 的,它不会计 null 为一种情况
select count(id) as total_pv,
count(submit_time) as complete_pv,
count(distinct if(submit_time is not null, exam_id, null)) as complete_exam_cnt
from exam_record
select count(id) as total_pv,
count(submit_time) as complete_pv,
count(distinct exam_id and score is not null) as complete_exam_cnt
from exam_record
SQL125
# 这样写为什么就错?
select min(score) as min_score_over_avg
from exam_record #这样写没有保证查询的试卷类型是SQL
where score >= (select avg(score)from exam_record as er , examination_info as eiwhere ei.tag = 'SQL'and ei.exam_id = er.exam_idand er.score is not null
);
# correct
select min(score) as min_score_over_avg
from exam_record as er , examination_info as ei
where ei.tag = 'SQL'
and ei.exam_id = er.exam_id
and er.score is not null
and score >= (select avg(score)from exam_record as erwhere er.exam_id = ei.exam_idand er.score is not null
);
SQL126
题目:按年月进行分组,统计每组的用户id个数(也就是这个月有多少活跃用户),统计每组的用户活跃天数的平均值(总天数/总人数)
总天数计算方法: ∑ i = 1 i = l a s t − u s e r 第 i 个用户一个月内的登录天数之和 \sum_{i=1}^{i=last-user} 第i个用户一个月内的登录天数之和 ∑i=1i=last−user第i个用户一个月内的登录天数之和
DATE_FORMAT(date,fmt)
按照字符串 fmt
格式化日期 date
值
YEAR(date) / MONTH(date) / DAY(date)
返回具体的日期值
count( distinct uid, date_format(submit_time, '%y%m%d') )
,这里的知识点:count函数内本只能接收一个参数,distinct 修饰是所有字段的,并不是修饰一个字段
语句含义:去掉一个用户在一天内的多次登录计数的重复计数,保证如果同一用户在同一天进行了多次活动,只有一次会被计数。
select date_format(submit_time, '%Y%m') as month, # %Y四位年份,%m两位数字月份round( count(distinct uid, date_format(submit_time, '%y%m%d') ) / count(distinct uid) , 2) as avg_active_days,count(distinct uid) as mau #统计组内不同用户id数量
from exam_record
where submit_time is not null
and year(submit_time) = 2021
group by date_format(submit_time, '%Y%m') # 按照年月分组
SQL127
select date_format(submit_time, '%Y%m') as submit_month,count(distinct uid, submit_time) as month_q_cnt,round(count(distinct uid, submit_time) / max(DAY(LAST_DAY(submit_time))) #这里必须用一个聚合函数,由于汇总时的天数按31算,因此用max最为合适,day+lasy_day一起得到当月的天数, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021' #过滤字段写到分组前
group by submit_monthunionselect '2021汇总' as submit_month,
count(distinct uid, submit_time) as month_q_cnt,
round(count(distinct uid, submit_time) / 31, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021'order by submit_month;
COALESCE
是一个函数,coalesce (expression_1, expression_2, …,expression_n) ,依次检验,返回第一个不是 null 的值
MySQL5.7之后,sql_mode中ONLY_FULL_GROUP_BY模式默认设置为打开状态。
ONLY_FULL_GROUP_BY的语义就是确定select target list中的所有列的值都是明确语义,因此这里的coalesce是不好使的,可以通过any_value()函数来抑制ONLY_FULL_GROUP_BY值被拒绝,any_value()会选择被分到同一组的数据里第一条数据的指定列值作为返回数据
GROUP BY中使用WITH ROLLUP
WITH ROLLUP
,使用 WITH ROLLUP
关键字之后,在所有查询出的分组记录之后增加一条记录
,该记录
计算查询出的所有记录的总和
注意:当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。
SELECTany_value(coalesce(DATE_FORMAT(submit_time,"%Y%m"),'2021汇总')) as submit_month,count(submit_time) as month_q_cnt,# 因为汇总除的数也是31,因此这里取max聚合round(count(submit_time) / max(day(last_day(submit_time))),3) as avg_day_q_cnt
FROM practice_record
WHERE year(submit_time) = '2021'
GROUP BY date_format(submit_time,"%Y%m") with rollup;
SQL 128
使用 count()
函数实现条件统计的基础是:对于值为NULL的记录不计数,利用这个性质我们可以轻松统计出值不为 NULL 的记录,再统计总记录,即可得到值为 NULL 的记录。
# 统计num大于200的记录
select count(num > 200 or null) from a;
# or null 作用就是当条件不满足时,函数变成了count(null)不会统计数量
# 但是 num > 200 这个条件不成立时的 false 是会被统计到的
GROUP_CONCAT()
函数是mysql中非常实用的聚合函数,将给分组内的值连接为一个字符串。其完整语法:
GROUP_CONCAT([DISTINCT] 要连接的字段 [ORDER BY 排序字段 ASC/DESC] [SEPARATOR ‘分隔符’])
select uid,count(uid) - count(submit_time) as incomplete_cnt,count(submit_time) as complete_cnt,group_concat(distinct date_format(start_time, '%Y-%m-%d'), ':', tagOrder BY start_time ASC #排序字段SEPARATOR ';') as detail
from exam_record as er
inner join examination_info as ei
on er.exam_id = ei.exam_id
where year(start_time) = '2021' #过滤字段写到分组前
group by uid
having incomplete_cnt < 5 and incomplete_cnt > 1
and complete_cnt >= 1
order by incomplete_cnt desc;
多表查询
SQL 129
先考虑简单的,找出 “当月均完成试卷数”不小于3的用户们
,然后按 tag 分组统计存在 start_time 的作答记录个数即可
select tag, count(start_time) as tag_cnt
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idgroup by uid, date_format(start_time, '%Y%m')having count(date_format(submit_time, '%Y%m')) >= 3
)
group by tag
order by tag_cnt desc;
SQL 130
select ei.exam_id as exam_id,count(distinct uid) as uv,# round(avg(score) ,1) as avg_scoreround(sum(score) / count(score) , 1) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where date_format(start_time, '%Y%m%d') in ( # 时间select date_format(release_time, '%Y%m%d') # 先弄出SQL试卷的发出的时间字段from examination_infowhere tag = 'SQL'
)
and uid in ( # 用户select uid # 再弄出等级大于5的用户的uidfrom user_infowhere level > 5
)
and tag = 'SQL' # SQL试卷
group by ei.exam_id #所有的SQL试卷按exam_id分组
order by uv desc, avg_score;
SQL 131
select level, count(level) as level_cnt
from user_info as ui, (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idwhere tag = 'SQL' && score > 80
) as tmp
where ui.uid = tmp.uid
group by level
order by level_cnt desc;
SQL 132
再套一个 select 来使得子查询的排序独立
select * from (
select exam_id as tid, count(distinct uid) as uv,count(start_time) as pv
from exam_record
group by exam_id
order by uv desc, pv desc
) as t1unionselect * from (
select question_id as tid,count(distinct uid) as uv,count(submit_time) as pv
from practice_record
group by question_id
order by uv desc, pv desc
) as t2
SQL 133
TIME_TO_SEC()
将时间差转换为秒
select uid, 'activity1' as activity
from exam_record
group by uid
having min(score) >= 85unionselect uid, 'activity2' as activity
from examination_info as ei
inner join exam_record as er
on er.exam_id = ei.exam_id
where score > 80
and difficulty = 'hard'
and TIME_TO_SEC(timediff(submit_time, start_time)) < duration * 30order by uid;
其他操作
SQL 146
select uid,floor(avg(any_value(coalesce(score, 0)))) as avg_score,round(avg(if(submit_time is not null, timestampdiff(minute, start_time, submit_time), duration)), 1) as avg_time_took
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where difficulty = 'hard'
and uid in (select uidfrom user_infowhere level = 0
)
group by uid
SQL 147
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and uid in (select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109'union select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109'
)
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and (uid in(select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109')or uid in(select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109')
)
SQL 148(正则表达式)
用正则表达式匹配纯数字或者中间纯数字
select uid, er.exam_id,round(avg(score) ,0) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom user_infowhere nick_name regexp '^牛客[0-9]+号$'or nick_name regexp '^[0-9]+$'
)
and ei.exam_id in (select exam_idfrom examination_infowhere tag regexp '^[Cc]'
)
and score is not null
group by uid, exam_id
order by uid, avg_score
SQL 149(WITH AS)
比较复杂的一个题,需要用 WITH AS 存一下查询
with t as (select ui.uid as uid,count(start_time) - count(submit_time) as incomplete_cnt,round(if(count(start_time) - count(submit_time) > 0,(count(start_time) - count(submit_time)) / count(start_time),0),3) as incomplete_rate,level,count(start_time) as total_cnt # 作答个数from user_info as uileft join exam_record as eron ui.uid = er.uidgroup by uid
)select uid, incomplete_cnt, incomplete_rate
from t
where exists(select uid from t where level = 0 and incomplete_cnt > 2
)
and level = 0
union
select uid, incomplete_cnt, incomplete_rate
from t
where not exists (select uid from t where level = 0 and incomplete_cnt > 2
)
and total_cnt > 0 # 有作答记录的用户
order by incomplete_rate
SQL150(CASE WHEN THEN)
很烂但有用的代码
select ui.level,case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end as score_grade,round(count( case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end) / num, 3) as ratio
from exam_record as er, user_info as ui, (select level, count(level) as numfrom exam_record as erinner join user_info as uion er.uid = ui.uidwhere score is not nullgroup by levelorder by level desc
) as tmp
where er.uid = ui.uid
and tmp.level = ui.level
and score is not null
group by level, score_grade
order by level desc, ratio desc
SQL 152
select er.uid, level, register_time, score as max_score
from exam_record as er
inner join user_info as ui
on er.uid = ui.uid
where exam_id in ( # 把exam_record筛的只剩下job为算法的人做的算法试卷记录select exam_idfrom examination_infowhere tag = '算法'
)
and er.uid in (select uidfrom user_infowhere job = '算法'
)
and score is not null # 还得做完
order by score desc
limit 6, 3;
SQL 153(substring_index)
substring_index(str,delim,count)
,str:要处理的字符串,delm:分隔符
SELECT exam_id,substring_index(tag, ',', 1) AS tag,substring_index(substring_index(tag, ',', 2), ',', -1) AS difficulty,substring_index(tag, ',', -1) AS duration
FROM examination_info
WHERE tag LIKE '%,%';
SQL 154(IF)
简单的 IF
应用
select uid, (if(char_length(nick_name) > 13, concat(substring(nick_name, 1, 10), '...'),nick_name)
) as nick_name
from user_info
where char_length(nick_name) > 10;
SQL 155
这个题写的我脑子有点乱
select t1.tag, t2.total_num
from (select tag, num # 查询试卷作答数小于3的exam_id对应的tag和个数from examination_info as ei, ( select exam_id, count(exam_id) as num #按exam_id分组,并统计个数from exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_id # 多表查询and num < 3
) as t1, (select tag, sum(num) as total_num #按tag分类,把大写的tag聚合起来统计个数from examination_info as ei, (select exam_id, count(exam_id) as numfrom exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_idgroup by tag
) as t2
where upper(t1.tag) = t2.tag # 小写的t1.tag匹配大写的t2.tag
and t1.tag != t2.tag
相关文章:
MySQL 学习笔记(刷题篇)
SQL进阶挑战 聚合分组查询 SQL123 select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1) as clip_avg_score from examination_info as ei, exam_record as er where ei.exam_id er.exam_id and ei.tag SQL and ei.diffi…...

windows系统如何配置yarn环境变量
启动前端项目,突然遇到报错: 原因在于没有安装yarn,或没有配置环境变量。 全局安装 yarn 可在vsCode中输入,也可在命令行输入(winR,输入cmd) npm install -g yarn添加环境变量 找到yarn的安…...

视频中的文字水印怎么去除?这三招学会轻松去视频水印
短视频与我们生活,工作息息相关,日常在在刷短视频时,下载保存后发现带有文字logo水印,如果直接拿来进行二次创作,不仅影响观看效果,平台流量还会受限制。怎么去除视频中的文字水印就成为了当下热门话题之一…...

Java项目学生管理系统二查询所有
学生管理 近年来,Java作为一门广泛应用于后端开发的编程语言,具备了广泛的应用领域和丰富的开发资源。在前几天的博客中,我们探讨了如何搭建前后端环境,为接下来的开发工作打下了坚实的基础。今天,我们将进一步扩展我…...
27.Spring如何避免在并发下获取不完整的Bean?
Spring如何避免在并发下获取不完整的Bean? 1、为什么获取不到完整的Bean? 我们知道, 如果spring容器已经加载完了, 那么肯定所有bean都是完整的了, 但如果, spring没有加载完, 在加载的过程中, 构建bean就有可能出现不完整bean的情况 2、如何解决读取到不完整bean的问题. …...

浅析SD-WAN企业组网部署中简化网络运维的关键技术
网络已经成为现代企业不可或缺的基础设施,它为企业提供了连接全球的桥梁。随着全球化和数字化转型的加速推进,企业面临着越来越多的网络挑战和压力。传统的网络组网方式往往无法满足企业规模扩大、分支机构增多、上云服务等需求,导致网络性能…...

【Rust】快速教程——自定义类型、数字转枚举、Cargo运行
前言 超过一定的年龄之后,所谓人生,无非是一个不断丧失的过程而已。宝贵的东西,会像梳子豁了齿一样从手中滑落下去。你所爱的人会一个接着一个,从身旁悄然消逝。——《1Q84》 \;\\\;\\\; 目录 前言自定义类型数字转枚举Cargo.tom…...
python 实现 AIGC 大语言模型中的概率论:生日相同问题的代码场景模拟
对深度学习本质而言,它实际上就是应用复杂的数学模型对输入数据进行建模,最后使用训练好的模型来预测或生成新的数据,因此深度学习的技术本质其实就是数学。随着大语言模型的发展,人工智能的数学本质被进一步封装,从业…...

SD-WAN组网中的CPE及云服务CPE部署方法
什么是CPE? CPE全称为Customer Premises Equipment,即客户端设备,在SD-WAN中通常为路由器,部署在中心点和分支上,提供连接和路由、协议转换、流量监控等功能。一般可分为硬件CPE和虚拟化CPE(virtual CPE&a…...

理解BatchNormalization层的作用
深度学习 文章目录 深度学习前言一、“Internal Covariate Shift”问题二、BatchNorm的本质思想三、训练阶段如何做BatchNorm四、BatchNorm的推理(Inference)过程五、BatchNorm的好处六、机器学习中mini-batch和batch有什么区别 前言 Batch Normalization作为最近一年来DL的重…...

uniapp实现文件预览过程
H5实现预览 <template><iframe :src"_url" style"width:100vw; height: 100vh;" frameborder"0"></iframe> </template> <script lang"ts"> export default {data() {return {_url: ,}},onLoad(option…...
深度学习-学习笔记记录
1、点云语义分割方法分类 分为5类:点、二维投影、体素、融合、集成 2、融合与集成的区别 融合: 概念:主要是将不同来源、类型的模型,例如深度学习、传统机器学习等,的结果或特征进行结合,以得到一个更好的模…...

程序员养生之道:延寿不忘初心——延寿必备
文章目录 每日一句正能量前言如何养生饮食篇运动篇休息篇后记 每日一句正能量 现代社会已不是大鱼吃小鱼的年代,而是快鱼吃慢鱼的年代。 前言 在IT行业中,程序员是一个重要的职业群体。由于长时间的繁重编程工作,程序员们常常忽略了身体健康…...

使用Docker安装部署Swagger Editor并远程访问编辑API文档
文章目录 Swagger Editor本地接口文档公网远程访问1. 部署Swagger Editor2. Linux安装Cpolar3. 配置Swagger Editor公网地址4. 远程访问Swagger Editor5. 固定Swagger Editor公网地址 Swagger Editor本地接口文档公网远程访问 Swagger Editor是一个用于编写OpenAPI规范的开源编…...

Nacos 2.X核心架构源码剖析
概述 注册中心并发处理,1.4.x 写时复制,2.1.0 读写分离;nacos 一般使用 AP 架构,即临时实例,1.4.x 为 http 请求,2.1.0 优化为 gRPC 协议;源码中使用了大量的事件通知机制和异步定时线程池&…...

C语言--每日选择题--Day31
第一题 1. 下面程序 i 的值为() int main() {int i 10;int j 0;if (j 0)i; elsei--; return 0; } A:11 B:9 答案及解析 B if语句中的条件判断为赋值语句的时候,因为赋值语句的返回值是右操作数; …...

chrome vue devTools安装
安装好后如下图所示: 一:下载vue devTools 下载链接https://download.csdn.net/download/weixin_44659458/13192207?spm1001.2101.3001.6661.1&utm_mediumdistribute.pc_relevant_t0.none-task-download-2%7Edefault%7ECTRLIST%7EPaid-1-13192207…...

Spring Security 6.x 系列(7)—— 源码分析之Builder设计模式
一、Builder设计模式 WebSecurity、HttpSecurity、AuthenticationManagerBuilder 都是框架中的构建者,把他们放到一起看看他们的共同特点: 查看AuthenticationManagerBuilder的继承结构图: 查看HttpSecurity的继承结构图: 查看W…...
PyQt6 中自定义浮点型滑块类
介绍: 在PyQt6中,滑块(Slider)是常用的用户界面元素之一,用于选择数值范围。然而,有时候我们可能需要使用浮点数值,而标准的滑块仅支持整数。为了解决这个问题,我们可以创建一个自定…...
笔记,B+树
B树面对的场景,是一个有10亿行的表,希望某一列是有序的。这么大的数据量,内存里放不下,需要放在硬盘里。结果,原本运行于内存的二叉树,就升级为B树了。 在二叉树中,每个节点存储着一个数字&…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...