APOLLO自动驾驶技术沙龙:未来已来,共创智能交通新时代
在这次Apollo会议上,我深刻地感受到了人工智能自动驾驶技术领域的最新进展和未来趋势。作为一名从事软件开发工作的人员,我深感荣幸能够参加这次盛会。
前言
本次活动是百度Apollo社区工程师齐聚首钢Park,带来现场实操与技术分享。主要围绕Apollo新版本的整体介绍、工程技术分享、算法技术分享、工具技术分享,顺便在现场体验了一下百度人工智能相关的产品。我们知道百度在国内做自动驾驶探索还是比较早的。2013年就开始准备,2017年就开始发布相关的版本,到目前差不多已经迭代了12个版本,在Beta中,他们在工程框架、算法和工具三个方向实现了全面升级,使得Apollo在整体操作更加的灵活、功能更加的丰富强大,极大的提升了开发效率和用户体验,助力更多开发者构建自己的自动驾驶系统。
Apollo新版本的整体介绍
1.包管理整体进化,便于二次开发。
之前的历史版本需要全量下载,下载时间比较长,编译时间更久,后来在新版本中对模块组件颗粒度重构以满足不同的智能化场景。使得Apollo整体架构更加清晰,降低新人开发者上手的门槛。
2.统一调度接口。
只需基于接口调度模块,即可实现特定场景的自动驾驶,可短时间完成Demo场景搭建。
3.新增插件机制,降低代码量,减少学习成本。
不用每个代码都看明白,把对应的插件拿过来复用即可。
4.引入全新的模型,检测效果大大提升。
在激光雷达检测方向,采用centerpoint替换了cnnseg模型;相机检测方向,采用yoloX+yolo3d替换了原yolo模型。
5.提供增量训练,以满足多种场景
代码训练完全开源,开发者可独立完成模型训练。
算法技术分享
Beta在Apollo 8.0的基础上对感知算法进行了升级优化,Lidar检测采用了比较新的CenterPoint模型并使用百度百万级数据进行训练,视觉上采用了Yolo X、Yolo 3D模型,检测效果和泛化性都得到了巨大提升,而且还提供了增量训练,支持独立自主进行模型训练。
1.Beta在8.0版本基础上,对算法模型进行了更新升级,同时还在其他方面做了优化。
2.Beta使用百万真实路测数据对CenterPoint进行训练和优化,精度和召回率相较于应用最多的CNNSeg模型提升了20%+,检测能力和泛化能力显著提升。
3.Beta提供了Tensorrt + fp16推理 & Int8推理的功能和教程,在保持模型检测效果前提下,大幅降低了模型的推理耗时和GPU占用,在低算力平台运行可满足实时性要求。
4.Beta开源了CenterPoint的训练代码,新增了以下功能:冻结网络层训练、fp16训练、适配自定义数据集等。开发者可以根据教程,使用公开/自定义数据集快速展开训练,大大降低了用户的训练开发成本,开发者可快速方便地开展模型训练部署、增量训练、Apollo感知赛事等任务。
5.在相机检测方向,视觉感知上我们使用了Yolo X+Yolo 3D两阶段模型替换了原来的Yolo单阶段模型,使得Beta的相机检测更易用、更好用,同时速度更快、效果更好。
工具技术分享
在新版本Beta中,小桥老师对Apollo开发者工具Dreamview进行了一系列的技术升级和功能拓展的讲解,带来了全新的Dreamview+。
1.基于模式的多场景——流程更简洁
以感知、PnC等具体开发场景作为模式分类,精简各类模式下的操作步骤,优化使用流程,提升开发效率;
2.基于面板的布局——可视化更灵活
支持自由配置可视化面板的布局、各面板内容以及大小,使开发者能创建符合自身工作流的操作界面;
3.集成云端资源中心——取用更方便
数据资源集中,可便捷管理和迅速取用,同时进一步加强与 Studio 云端资源互动,可一键下载各类资源用于算法测试,包括地图、场景、车辆配置、数据包等,进一步丰富开发者资源库。
4.新人引导与中英切换——上手更轻松
可视化提供使用引导,协助新开发者快速学习操作流程及步骤,降低学习和探索成本;全量功能支持中英切换,降低专业名词理解难度,响应国内外开发者诉求。
总结
自动驾驶技术作为人工智能和汽车工业领域的重要交叉点,尽管在过去几年取得了长足进步,但目前自动驾驶仍然面临着一系列挑战和问题。比如增强传感器技术、改进深度学习算法,并确保车辆与其他交通参与者之间的高效通信让自动驾驶汽车在行驶过程中必须能够准确地感知周围环境,并做出适时的决策,自动驾驶系统需要与乘客进行有效的交互,以传递信息、确认指令或获取意见。设计一个直观且易于理解的人机交互界面,让乘客始终了解车辆的状态,是一个重要的问题。自动驾驶技术在良好天气条件下表现良好,但在恶劣天气下,如雨雪天气,传感器性能可能会受到限制,导致驾驶风险增加。开发能够适应各种天气条件的自动驾驶系统是当前的重要课题。自动驾驶技术尚未完全成熟,仍然面临着多项挑战。但是,随着科技的不断进步和持续投入研发,我们可以预见自动驾驶汽车将成为未来道路交通的重要组成部分,为我们带来更便捷、更安全的出行体验。现场还展示了许多最新的研究成果和产品。其中最引人注目的是自动驾驶汽车展示。这些成果展示了自动驾驶的强大潜力和无限可能性,让我对未来充满了期待。
相关文章:

APOLLO自动驾驶技术沙龙:未来已来,共创智能交通新时代
在这次Apollo会议上,我深刻地感受到了人工智能自动驾驶技术领域的最新进展和未来趋势。作为一名从事软件开发工作的人员,我深感荣幸能够参加这次盛会。 前言 本次活动是百度Apollo社区工程师齐聚首钢Park,带来现场实操与技术分享。主要围绕Ap…...
Java面试题12
1.redis 怎么实现分布式锁? Redis可以通过以下方式实现分布式锁: 使用RedLock算法:多个Redis节点组合使用,通过竞争锁来达到分布式锁的效果。使用SETNX命令:利用SETNX(SET if Not eXists)命令…...
ubuntu上创建服务启动python脚本
场景 最近在使用ubuntu服务器部署MySQL和同步数据,同步数据使用的是python,但是我不能直接操作服务器,只能通过Xshell远程访问服务器,但是启动python脚本的时候如果关掉xshell会停止Python脚本,所以如果要让python脚本…...

51单片机制作数字频率计
文章目录 简介设计思路工作原理Proteus软件仿真软件程序实验现象测量误差和范围总结 简介 数字频率计是能实现对周期性变化信号频率测量的仪器。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行较慢,而且测量频率的范围较小。这…...
java中强引用、软引用、弱引用、虚引用的区别是什么?
Java中的引用类型主要分为强引用、软引用、弱引用和虚引用,它们之间的区别主要体现在垃圾回收的行为上。 强引用(Strong Reference):这是使用最普遍和默认的引用类型。如果一个对象具有强引用,那么垃圾回收器就永远不会…...

springboot -事务管理
事务 概念 事务是一组操作的集合,它是一个不可分割的工作单位,这些操作要么同时成功,要么同时失败。 操作 开启事务: start transaction / begin提交事务:commit回滚事务: rollback 注解 Transactional …...
商城系统通过Kafka消息队列,实现订单的处理和状态更新
以下是一个简单的Spring Boot应用程序示例,演示如何使用Kafka实现订单的处理和状态更新。 首先,我们创建一个名为“order”的topic,在application.yaml配置文件中添加Kafka的配置: spring:kafka:bootstrap-servers: localhost:9…...

IntelRealSense深度相机D455在ROS1运行中的消息内容
IntelRealSense深度相机D455在ROS1运行中的消息内容 通过下面命令所有相关信息通过ros topic的方式发布出去rosnode查看rqt_graph查看rostopic查看通过下面命令直接查看RVIZ中点云信息rosnode查看rqt_graph查看rostopic查看 Physical Port:: /sys/devices/pci0000:0…...

公有云迁移研究——AWS Translate
大纲 1 什么是Translate2 Aws Translate是怎么运作的3 Aws Translate和Google Translate的区别4 迁移任务4.1 迁移原因 5 Aws Translate的Go demo6 迁移中遇到的问题6.1 账号和权限问题:6.2 小语种 1 什么是Translate Translate是一种文本翻译服务,它使…...

【laBVIEW学习】4.声音播放,自定义图标,滚动条设置,保存参数以及恢复参数
一。声音播放(报错,未实现) 1.报错4810 2.解决方法: 暂时未解决。 二。图片修改 1.目标:灯泡---》自定义灯泡 2.步骤: 1.右键点击--》自定义运行 表示可以制作自定义类型 2.右键--》打开自定义类型 这样就…...
《论文阅读》使用条件变分自动编码器学习神经对话模型的语篇水平多样性 2017 ACL
《论文阅读》使用条件变分自动编码器学习神经对话模型的语篇水平多样性 2017 ACL 前言简介相关知识Stochastic Gradient Variational BayesMultivariate Gaussian DistributionIsotropic Gaussian DistributionReparameterization Trickprior network & posterior network …...
【win32_003】不同字符集下的通用字符串语法TCHAR、TEXT、PTSTR、PCTSTR
TCHAR 通用 根据项目属性是否使用Unicode字符集,TCHAR被解释为CHAR(char)或WCHAR(wchar_t)数据类型。 TCHAR a ‘A’ ; TCHAR arr [] TEXT(“AA”); TCHAR arr [100] TEXT(“AA”); TCHAR *pstr TEXT(“AA”); TEXT宏 #ifdef UNICODE #define __TEXT(quote) L#…...
《漫长的等待》—— 读后感
前几天下班地铁上,人太多,看技术书籍看不进去,翻阅微信读书,看到了这本书,看了几章免费的章节,因为后续需要买会员就没有继续读,但是这几天偶尔还是会想到书籍中的情节,所以今天充了…...

基于ROPNet项目训练modelnet40数据集进行3d点云的配置
项目地址: https://github.com/zhulf0804/ROPNet 在 MVP Registration Challenge (ICCV Workshop 2021)(ICCV Workshop 2021)中获得了第二名。项目可以在win10环境下运行。 论文地址: https://arxiv.org/abs/2107.02583 网络简介…...
力扣215. 数组中的第K个最大元素
堆排序 前言 面试中著名的 TopK 排序;常见的解法有冒泡排序、堆排序;更深入的思路可以参考:拜托,面试别再问我TopK了!!!使用了堆排序的算法,关于堆可以参考:堆数据结构的…...

轻量封装WebGPU渲染系统示例<40>- 多层材质的Mask混合(源码)
当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/MaskTextureEffect.ts 当前示例运行效果: 两层材质效果: 三层材质效果: 此示例基于此渲染系统实现,当前示例TypeScript源码如下: export c…...
程序员的实用网站导航与推荐
当你遇到问题时 Stack Overflow:订阅他们的每周新闻和任何你感兴趣的主题Google:全球最大搜索引擎必应:在你无法使用Google的时候CSDN:聊胜于无AI导航一号AI导航二号 新闻篇 OSCHINA:中文开源技术交流社区 针对初学…...

上午面了个腾讯拿 38K 出来的,让我见识到了基础的天花板
今年的校招基本已经进入大规模的开奖季了,很多小伙伴收获不错,拿到了心仪的 offer。 各大论坛和社区里也看见不少小伙伴慷慨地分享了常见的面试题和八股文,为此咱这里也统一做一次大整理和大归类,这也算是划重点了。 俗话说得好…...

【halcon】C# halcon 内存暴增
1 读取图片需要及时手动释放 一个6M的图片通过halcon进行加载,大约会消耗200M的内存,如果等待GC回收,而你又在不停的读取图片,你的内存占用,将在短时间内飙升。 2 halcon控件显示图片需要清空。 /// <summary>…...
LeetCode130. Surrounded Regions
文章目录 一、题目二、题解 一、题目 Given an m x n matrix board containing ‘X’ and ‘O’, capture all regions that are 4-directionally surrounded by ‘X’. A region is captured by flipping all O’s into X’s in that surrounded region. Example 1: Input…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...