当前位置: 首页 > news >正文

R语言进行正态分布检验

查了很多资料,还是比较模糊

Kolmogorov-Smirnov检验(K-S检验)广泛用于正态性检验和其他分布的拟合检验。适用于中等到大样本。
Lilliefors检验是K-S检验的一种变体,专门为小样本设计。其通过使用更准确的临界值来提高对小样本的适应性。
Shapiro-Wilk(S-W)检验通常在小样本下表现较好,而在大样本下可能对正态性的敏感性降低。在小样本情况下通常比K-S检验更准确。对于大样本,由于S-W检验可能会过于严格,导致拒绝正态性的可能性较大,这种情况下,应该使用K-S检验。

SPSS 5000及以下用Lilliefors检验、S-W检验;5000以上仅用Lilliefors检验
样本量>30时,倾向于看K-S检验结果;样本量≤30时,倾向于看Lilliefors检验、S-W检验结果

K-S检验

ks_result <- ks.test(sample_data, "pnorm")ks_result <- ks.test(sample_data, "pnorm", mean = mean(sample_data), sd = sd(sample_data))

S-W检验

shapiro_result <- shapiro.test(sample_data)

lillie修正的K-S检验

需要先安装
install.packages("nortest")
library(nortest)
lillie_result <- lillie.test(sample_data)

读取excel数据
library(readxl)
excel_file <- “数据分析测试数据.xlsx”
first_column <- data[[0]]

相关文章:

R语言进行正态分布检验

查了很多资料&#xff0c;还是比较模糊 Kolmogorov-Smirnov检验&#xff08;K-S检验&#xff09;广泛用于正态性检验和其他分布的拟合检验。适用于中等到大样本。 Lilliefors检验是K-S检验的一种变体&#xff0c;专门为小样本设计。其通过使用更准确的临界值来提高对小样本的适…...

什么是SPA(Single Page Application)?它的优点和缺点是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

由于找不到xinput1_3.dll,无法继续执行代码的多种解决方法指南,xinput1_3.dll文件修复

当玩家或用户在启动某些游戏和应用程序时&#xff0c;可能会遭遇到一个系统错误提示&#xff1a;“由于找不到xinput1_3.dll,无法继续执行代码l”。这种情况通常指出系统中DirectX组件存在问题。以下我们将介绍几种常用的解决方法&#xff0c;并提供详细的操作步骤。 一.找不到…...

Vue---Echarts

项目需要用echarts来做数据展示&#xff0c;现记录vue3引入并使用echarts的过程。 1. 使用步骤 安装 ECharts&#xff1a;使用 npm 或 yarn 等包管理工具安装 ECharts。 npm install echarts 在 Vue 组件中引入 ECharts&#xff1a;在需要使用图表的 Vue 组件中&#xff0c;引入…...

uni-app实现返回刷新上一页

方案一 通过监听器实现 page1 uni.$on("refresh", function(data) {if(data.page "page2") {this.reload()} })page2 methods: {handleBack() {uni.$emit("refresh", {page: "page2"})uni.navigateBack()} }方案二 通过页面实例实…...

centos服务器安装docker和Rabbitmq

centos服务器 一 centos安装docker1 安装docker所需要的依赖包2配置yum源3查看仓库中所有的docker版本4安装docker5 设置docker为开机自启6验证docker是否安装成功 二 使用docker安装RabbitMQ拉取RabbitMQ镜像创建并运行容器 一 centos安装docker 1 安装docker所需要的依赖包 …...

【Redis】Redis高级特性和应用(慢查询、Pipeline、事务、Lua)

目录 Redis的慢查询 慢查询配置 慢查询操作命令 慢查询建议 Pipeline 事务 Redis的事务原理 Redis的watch命令 Pipeline和事务的区别 Lua Lua入门 安装Lua Lua基本语法 注释 标示符 关键词 全局变量 Lua中的数据类型 Lua 中的函数 Lua 变量 Lua中的控制语句…...

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创&#xff0c;认准DannisTang&#xff08;tangweixuan1995foxmail.com&#xff09; 文章目录 第〇章 阅读前提示第一章 准备工作第一节 Python下载第二节 Python安装第三节 Python配置第四节 Pycharm下载第五节 Pycharm安装第六节 CUDA的安装 第二章 Anaconda安装与配…...

安装postgresql驱动及python使用pyodbc指定postgresql驱动调用postgresql

注&#xff1a;Python解释器版本(32位/64位)和postgresql驱动版本(32位/64位)需一致。 一、安装postgresql驱动 https://www.postgresql.org/ftp/odbc/versions/msi/ &#xff08;1&#xff09;32位&#xff1a; &#xff08;2&#xff09;64位&#xff1a; 双击安装。全程默…...

【OpenCV】计算机视觉图像处理基础知识

目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Ca…...

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…...

Dockerfile 指令的最佳实践

这些建议旨在帮助您创建一个高效且可维护的Dockerfile。 一、FROM 尽可能使用当前的官方镜像作为镜像的基础。Docker推荐Alpine镜像&#xff0c;因为它受到严格控制&#xff0c;体积小&#xff08;目前不到6 MB&#xff09;&#xff0c;同时仍然是一个完整的Linux发行版。 FR…...

Drools 入门:折扣案例

1. 安装 在idea软件中安装Drools 插件&#xff0c;我这里是直接搜索Drools就可以搜到 2. 实现入门案例 2.1 配置pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi&q…...

微信小程序中生命周期钩子函数

微信小程序 App 的生命周期钩子函数有以下 7 个&#xff1a; onLaunch(options)&#xff1a;当小程序初始化完成时&#xff0c;会触发 onLaunch&#xff08;全局只触发一次&#xff09;。onShow(options)&#xff1a;当小程序启动或从后台进入前台显示时&#xff0c;会触发 on…...

“无忧文件安全!上海迅软DSE文件加密软件助您轻松管控分公司数据!

许多大型企业集团由于旗下有着分布在不同城市的分支机构&#xff0c;因此在规划数据安全解决方案时&#xff0c;不适合采用市面上常见的集中式部署方式来管控各分部服务器&#xff0c;而迅软DSE文件加密软件支持采用分布式部署的方式来解决这一问题。 企业用户只需在总部内部署…...

详解线段树

前段时间写过一篇关于树状数组的博客树状数组&#xff0c;今天我们要介绍的是线段树&#xff0c;线段树比树状数组中的应用场景更加的广泛。这些问题也是在leetcode 11月的每日一题频繁遇到的问题&#xff0c;实际上线段树就和红黑树 、堆一样是一类模板&#xff0c;但是标准库…...

C语言——指针的运算

1、指针 - 整数 #include<stdio.h> #define N_VALUES 5 int main() {flout values[N_VALUES];flout *vp;for(vp&values[0];vp<&values[N_VALUES]&#xff1b;) //指针的关系运算{*vp0; //指针整数} } 2、指针 - 指针 #include<stdio.h> int main() …...

Apache Hive(部署+SQL+FineBI构建展示)

Hive架构 Hive部署 VMware虚拟机部署 一、在node1节点安装mysql数据库 二、配置Hadoop 三、下载 解压Hive 四、提供mysql Driver驱动 五、配置Hive 六、初始化元数据库 七、启动Hive(Hadoop用户) chown -R hadoop:hadoop apache-hive-3.1.3-bin hive 阿里云部…...

python入门级简易教程

Python是一种高级编程语言&#xff0c;由Guido van Rossum于1991年创建。它是一种通用的、解释型的、高级的、动态的、面向对象的编程语言。 Python的编程哲学是简洁明了&#xff0c;强调代码的可读性和简洁性&#xff0c;使开发人员能够快速开发出正确的代码。Python被广泛用…...

模拟一个集合 里面是设备号和每日的日期

问题&#xff1a; 需要模拟一个集合 里面是设备号和每日的日期 代码如下&#xff1a; static void Main(string[] args){string equipmentCodePar "";DateTime time DateTime.Now; // 获取当前时间DateTime startDate time.AddDays(1 - time.Day);//获取当前月第一…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...