PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)
使用PPLCNet模型对车辆朝向进行识别
- 1 准备环境
- 2 准备模型
- 2.1 模型导出
- 2.2 修改配置文件
- 3 编译
- 3.1 使用CMake生成项目文件
- 3.2 编译
- 3.3 执行
- 3.4 添加后处理程序
- 3.4.1 postprocess.h
- 3.4.2 postprocess.cpp
- 3.4.3 在cls.h中添加函数声明
- 3.4.4 在cls.cpp中添加函数定义
- 3.4.5 在main.cpp中调用
- 4 模型预测
- 4.1 测试结果
- 4.2 与python预测结果对比
1 准备环境
参考上一篇:Windows PaddleSeg c++部署
2 准备模型
2.1 模型导出
对上一篇 使用PPLCNet模型对车辆朝向进行识别 训练得到模型进行转换。将该模型转为 inference 模型只需运行如下命令:
python tools\export_model.py -c .\ppcls\configs\PULC\vehicle_attribute\PPLCNet_x1_0.yaml -o Global.pretrained_model=output/PPLCNet_x1_0/best_model -o Global.save_inference_dir=./deploy/models/class_vehicle_attribute_infer

图2.1 训练得到的模型

图2.2 导出的模型
2.2 修改配置文件
deploy/configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml
修改Global下的infer_imgs和inference_model_dir。
Global:infer_imgs: "./images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg"inference_model_dir: "./models/class_vehicle_attribute_infer"batch_size: 1use_gpu: Trueenable_mkldnn: Truecpu_num_threads: 10#benchmark: Falseenable_benchmark: Falseuse_fp16: Falseir_optim: Trueuse_tensorrt: Falsegpu_mem: 8000enable_profile: False
3 编译
工程整体目录结构如下:
G:/paddle/c++├── paddle_inference
G:/paddle├── PaddleClas-release-2.5
3.1 使用CMake生成项目文件

3.2 编译
用Visual Studio 2022打开cpp\build\clas_system.sln,将编译模式设置为Release,点击生成->生成解决方案,在cpp\build\Release文件夹内生成clas_system.exe。
3.3 执行
进入到build/Release目录下,将准备的模型和图片放到clas_system.exe同级目录,build/Release目录结构如下:
Release
├──clas_system.exe # 可执行文件
├──images # 测试图片├── PULC├── vehicle_attribute├── 0002_c002_00030670_0.jpg
├──configs # 配置文件├── PULC├── vehicle_attribute├── inference_vehicle_attribute.yaml
├──models # 推理用到的模型├── class_vehicle_attribute_infer├── inference.pdmodel # 预测模型的拓扑结构文件├── inference.pdiparams # 预测模型的权重文件└── inference.pdiparams.info # 参数额外信息,一般无需关注
├──*.dll # dll文件
3.4 添加后处理程序
3.4.1 postprocess.h
// postprocess.h
#include <iostream>
#include <vector>namespace PaddleClas {class VehicleAttribute {public:float color_threshold = 0.5;float type_threshold = 0.5;float direction_threshold = 0.5;std::vector<std::string> color_list = { "yellow", "orange", "green", "gray", "red", "blue", "white","golden", "brown", "black" };std::vector<std::string> type_list = { "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus","truck", "estate" };std::vector<std::string> direction_list = { "forward", "sideward", "backward" };std::string run(std::vector<float>& pred_data);};
}
3.4.2 postprocess.cpp
// postprocess.cpp#include "include/postprocess.h"
#include <string>
namespace PaddleClas {std::string VehicleAttribute::run(std::vector<float>& pred_data) {int color_num = 10;int type_num = 9;int direction_num = 3;int index_color = std::distance(&pred_data[0], std::max_element(&pred_data[0相关文章:
PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)
使用PPLCNet模型对车辆朝向进行识别 1 准备环境2 准备模型2.1 模型导出2.2 修改配置文件3 编译3.1 使用CMake生成项目文件3.2 编译3.3 执行3.4 添加后处理程序3.4.1 postprocess.h3.4.2 postprocess.cpp3.4.3 在cls.h中添加函数声明3.4.4 在cls.cpp中添加函数定义3.4.5 在main.…...
学习记录---kubernetes中备份和恢复etcd
一、简介 ETCD是kubernetes的重要组成部分,它主要用于存储kubernetes的所有元数据,我们在kubernetes中的所有资源(node、pod、deployment、service等),如果该组件出现问题,则可能会导致kubernetes无法使用、资源丢失等情况。因此…...
使用单例模式+观察者模式实现参数配置实时更新
使用vector存储观察者列表 #include <iostream> #include <vector> #include <functional> #include <algorithm>// 配置参数结构体 struct MyConfigStruct {int parameter1;std::string parameter2; };class Config { public:using Observer std::f…...
区块链实验室(28) - 拜占庭节点劫持区块链仿真
在以前的FISCO环境中仿真拜占庭节点攻击区块链网络。该环境共有100个节点,采用PBFT作为共识机制,节点编号分别为:Node0,Node,… ,Node99。这100个节点的前2010区块完全相同,自区块2011开始分叉。…...
聊聊AsyncHttpClient的ChannelPool
序 本文主要研究一下AsyncHttpClient的ChannelPool ChannelPool org/asynchttpclient/channel/ChannelPool.java public interface ChannelPool {/*** Add a channel to the pool** param channel an I/O channel* param partitionKey a key used to retrieve the cac…...
[MySQL] MySQL复合查询(多表查询、子查询)
前面我们学习了MySQL简单的单表查询。但是我们发现,在很多情况下单表查询并不能很好的满足我们的查询需求。本篇文章会重点讲解MySQL中的多表查询、子查询和一些复杂查询。希望本篇文章会对你有所帮助。 文章目录 一、基本查询回顾 二、多表查询 2、1 笛卡尔积 2、2…...
[架构之路-256]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件系统不同层次的复用与软件系统向越来越复杂的方向聚合
目录 前言: 一、CPU寄存器级的复用:CPU寄存器 二、指令级复用:二进制指令 三、过程级复用:汇编语言 四、函数级复用:C语言 五、对象级复用:C, Java, Python 六、组件级复用 七、服务级复用 八、微…...
C++初学教程三
目录 一、运算符 一、自增自减运算符 二、位运算符 三、关系运算符...
雷达点云数据.pcd格式转.bin格式
雷达点云数据.pcd格式转.bin格式 注意,方法1原则上可行,但是本人没整好pypcd的环境 方法2是绝对可以的。 方法1 1 源码如下: def pcb2bin1(): # save as bin formatimport os# import pypcdfrom pypcd import pypcdimport numpy as np…...
Fiddler抓包测试
模拟弱网测试 操作:一、Rules - Customize Rules (快捷键CtrlR)弹出编辑器 二、接着CtrlF查找m_SimulateModem标志位 三、默认上传300ms,下载150ms 四、更改后,继续Rules - Performances - Simulate Modem Speeds勾上 …...
视频处理关键知识
1 引言 视频技术发展到现在已经有100多年的历史,虽然比照相技术历史时间短,但在过去很长一段时间之内都是最重要的媒体。由于互联网在新世纪的崛起,使得传统的媒体技术有了更好的发展平台,应运而生了新的多媒体技术。而多媒体技术…...
LeetCode435. Non-overlapping Intervals
文章目录 一、题目二、题解 一、题目 Given an array of intervals intervals where intervals[i] [starti, endi], return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. Example 1: Input: intervals [[1,2]…...
ffmpeg 实现多视频轨录制到同一个文件
引言 在视频录制中,有时会碰到这样一个需求,将不同摄像头的画面写入到一个视频文件,这个叫法很多,有的厂家叫合流模式,有的叫多画面多流模式。无论如何,它们的实质都是在一个视频文件上实现多路不同分辨率视…...
vue3中子组件调用父组件的方法
<script lang"ts" setup>前提 父组件: 子组件: const emit defineEmits([closeson]) 在子组件的方法中使用: emit(closeson)...
使用OkHttp上传本地图片及参数
下面以一个例子来讲解在项目中如何使用OKHttp来对本地图片做个最简单的上传功能,基本上无封装,只需要简单调用便可(对于OKHttp的引入不再单独做介绍)。 1:构建上传图片附带的参数(params) Map…...
无公网IP环境如何SSH远程连接Deepin操作系统
文章目录 前言1. 开启SSH服务2. Deppin安装Cpolar3. 配置ssh公网地址4. 公网远程SSH连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 前言 Deepin操作系统是一个基于Debian的Linux操作系统,专注于使用者对日常办公、学习、生活和娱乐的操作体验的极致࿰…...
不会代码(零基础)学语音开发(语音控制板载双继电器)
继电器的用途可广了,这个语音控制用处也特别广。继电器,它实际上是一种“自动开关”,用小电流去控制大电流运作,在电路中起着自动调节、安全保护、转换电路等作用。 在日常生活中,你插入汽车钥匙,车辆可以…...
在imx6ull中加入ov5640模块
本来觉得是一件很简单的事情但是走了很多的弯路,记录一下调试过程。 先使用正点原子提供的出厂内核把摄像头影像调试出来,然后cat /dev/video1,看一下video1牵扯到哪些模块,可以看到需要ov5640_camera.ko和 mx6s_capture.ko这两个…...
Kafka中的auto-offset-reset配置
Kafka这个服务在启动时会依赖于Zookeeper,Kafka相关的部分数据也会存储在Zookeeper中。如果kafka或者Zookeeper中存在脏数据的话(即错误数据),这个时候虽然生产者可以正常生产消息,但是消费者会出现无法正常消费消息的…...
TCP/IP_整理起因
先分享一个初级的问题;有个客户现场,终端设备使用客户网络更新很慢,使用手机热点更新速度符合预期;网络部署情况如下: 前期花费了很大的精力进行问题排查对比,怀疑是客户网络问题(其他的客户现…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
