PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)
使用PPLCNet模型对车辆朝向进行识别
- 1 准备环境
- 2 准备模型
- 2.1 模型导出
- 2.2 修改配置文件
- 3 编译
- 3.1 使用CMake生成项目文件
- 3.2 编译
- 3.3 执行
- 3.4 添加后处理程序
- 3.4.1 postprocess.h
- 3.4.2 postprocess.cpp
- 3.4.3 在cls.h中添加函数声明
- 3.4.4 在cls.cpp中添加函数定义
- 3.4.5 在main.cpp中调用
- 4 模型预测
- 4.1 测试结果
- 4.2 与python预测结果对比
1 准备环境
参考上一篇:Windows PaddleSeg c++部署
2 准备模型
2.1 模型导出
对上一篇 使用PPLCNet模型对车辆朝向进行识别 训练得到模型进行转换。将该模型转为 inference 模型只需运行如下命令:
python tools\export_model.py -c .\ppcls\configs\PULC\vehicle_attribute\PPLCNet_x1_0.yaml -o Global.pretrained_model=output/PPLCNet_x1_0/best_model -o Global.save_inference_dir=./deploy/models/class_vehicle_attribute_infer

图2.1 训练得到的模型

图2.2 导出的模型
2.2 修改配置文件
deploy/configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml
修改Global下的infer_imgs和inference_model_dir。
Global:infer_imgs: "./images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg"inference_model_dir: "./models/class_vehicle_attribute_infer"batch_size: 1use_gpu: Trueenable_mkldnn: Truecpu_num_threads: 10#benchmark: Falseenable_benchmark: Falseuse_fp16: Falseir_optim: Trueuse_tensorrt: Falsegpu_mem: 8000enable_profile: False
3 编译
工程整体目录结构如下:
G:/paddle/c++├── paddle_inference
G:/paddle├── PaddleClas-release-2.5
3.1 使用CMake生成项目文件

3.2 编译
用Visual Studio 2022打开cpp\build\clas_system.sln,将编译模式设置为Release,点击生成->生成解决方案,在cpp\build\Release文件夹内生成clas_system.exe。
3.3 执行
进入到build/Release目录下,将准备的模型和图片放到clas_system.exe同级目录,build/Release目录结构如下:
Release
├──clas_system.exe # 可执行文件
├──images # 测试图片├── PULC├── vehicle_attribute├── 0002_c002_00030670_0.jpg
├──configs # 配置文件├── PULC├── vehicle_attribute├── inference_vehicle_attribute.yaml
├──models # 推理用到的模型├── class_vehicle_attribute_infer├── inference.pdmodel # 预测模型的拓扑结构文件├── inference.pdiparams # 预测模型的权重文件└── inference.pdiparams.info # 参数额外信息,一般无需关注
├──*.dll # dll文件
3.4 添加后处理程序
3.4.1 postprocess.h
// postprocess.h
#include <iostream>
#include <vector>namespace PaddleClas {class VehicleAttribute {public:float color_threshold = 0.5;float type_threshold = 0.5;float direction_threshold = 0.5;std::vector<std::string> color_list = { "yellow", "orange", "green", "gray", "red", "blue", "white","golden", "brown", "black" };std::vector<std::string> type_list = { "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus","truck", "estate" };std::vector<std::string> direction_list = { "forward", "sideward", "backward" };std::string run(std::vector<float>& pred_data);};
}
3.4.2 postprocess.cpp
// postprocess.cpp#include "include/postprocess.h"
#include <string>
namespace PaddleClas {std::string VehicleAttribute::run(std::vector<float>& pred_data) {int color_num = 10;int type_num = 9;int direction_num = 3;int index_color = std::distance(&pred_data[0], std::max_element(&pred_data[0相关文章:
PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)
使用PPLCNet模型对车辆朝向进行识别 1 准备环境2 准备模型2.1 模型导出2.2 修改配置文件3 编译3.1 使用CMake生成项目文件3.2 编译3.3 执行3.4 添加后处理程序3.4.1 postprocess.h3.4.2 postprocess.cpp3.4.3 在cls.h中添加函数声明3.4.4 在cls.cpp中添加函数定义3.4.5 在main.…...
学习记录---kubernetes中备份和恢复etcd
一、简介 ETCD是kubernetes的重要组成部分,它主要用于存储kubernetes的所有元数据,我们在kubernetes中的所有资源(node、pod、deployment、service等),如果该组件出现问题,则可能会导致kubernetes无法使用、资源丢失等情况。因此…...
使用单例模式+观察者模式实现参数配置实时更新
使用vector存储观察者列表 #include <iostream> #include <vector> #include <functional> #include <algorithm>// 配置参数结构体 struct MyConfigStruct {int parameter1;std::string parameter2; };class Config { public:using Observer std::f…...
区块链实验室(28) - 拜占庭节点劫持区块链仿真
在以前的FISCO环境中仿真拜占庭节点攻击区块链网络。该环境共有100个节点,采用PBFT作为共识机制,节点编号分别为:Node0,Node,… ,Node99。这100个节点的前2010区块完全相同,自区块2011开始分叉。…...
聊聊AsyncHttpClient的ChannelPool
序 本文主要研究一下AsyncHttpClient的ChannelPool ChannelPool org/asynchttpclient/channel/ChannelPool.java public interface ChannelPool {/*** Add a channel to the pool** param channel an I/O channel* param partitionKey a key used to retrieve the cac…...
[MySQL] MySQL复合查询(多表查询、子查询)
前面我们学习了MySQL简单的单表查询。但是我们发现,在很多情况下单表查询并不能很好的满足我们的查询需求。本篇文章会重点讲解MySQL中的多表查询、子查询和一些复杂查询。希望本篇文章会对你有所帮助。 文章目录 一、基本查询回顾 二、多表查询 2、1 笛卡尔积 2、2…...
[架构之路-256]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件系统不同层次的复用与软件系统向越来越复杂的方向聚合
目录 前言: 一、CPU寄存器级的复用:CPU寄存器 二、指令级复用:二进制指令 三、过程级复用:汇编语言 四、函数级复用:C语言 五、对象级复用:C, Java, Python 六、组件级复用 七、服务级复用 八、微…...
C++初学教程三
目录 一、运算符 一、自增自减运算符 二、位运算符 三、关系运算符...
雷达点云数据.pcd格式转.bin格式
雷达点云数据.pcd格式转.bin格式 注意,方法1原则上可行,但是本人没整好pypcd的环境 方法2是绝对可以的。 方法1 1 源码如下: def pcb2bin1(): # save as bin formatimport os# import pypcdfrom pypcd import pypcdimport numpy as np…...
Fiddler抓包测试
模拟弱网测试 操作:一、Rules - Customize Rules (快捷键CtrlR)弹出编辑器 二、接着CtrlF查找m_SimulateModem标志位 三、默认上传300ms,下载150ms 四、更改后,继续Rules - Performances - Simulate Modem Speeds勾上 …...
视频处理关键知识
1 引言 视频技术发展到现在已经有100多年的历史,虽然比照相技术历史时间短,但在过去很长一段时间之内都是最重要的媒体。由于互联网在新世纪的崛起,使得传统的媒体技术有了更好的发展平台,应运而生了新的多媒体技术。而多媒体技术…...
LeetCode435. Non-overlapping Intervals
文章目录 一、题目二、题解 一、题目 Given an array of intervals intervals where intervals[i] [starti, endi], return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. Example 1: Input: intervals [[1,2]…...
ffmpeg 实现多视频轨录制到同一个文件
引言 在视频录制中,有时会碰到这样一个需求,将不同摄像头的画面写入到一个视频文件,这个叫法很多,有的厂家叫合流模式,有的叫多画面多流模式。无论如何,它们的实质都是在一个视频文件上实现多路不同分辨率视…...
vue3中子组件调用父组件的方法
<script lang"ts" setup>前提 父组件: 子组件: const emit defineEmits([closeson]) 在子组件的方法中使用: emit(closeson)...
使用OkHttp上传本地图片及参数
下面以一个例子来讲解在项目中如何使用OKHttp来对本地图片做个最简单的上传功能,基本上无封装,只需要简单调用便可(对于OKHttp的引入不再单独做介绍)。 1:构建上传图片附带的参数(params) Map…...
无公网IP环境如何SSH远程连接Deepin操作系统
文章目录 前言1. 开启SSH服务2. Deppin安装Cpolar3. 配置ssh公网地址4. 公网远程SSH连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 前言 Deepin操作系统是一个基于Debian的Linux操作系统,专注于使用者对日常办公、学习、生活和娱乐的操作体验的极致࿰…...
不会代码(零基础)学语音开发(语音控制板载双继电器)
继电器的用途可广了,这个语音控制用处也特别广。继电器,它实际上是一种“自动开关”,用小电流去控制大电流运作,在电路中起着自动调节、安全保护、转换电路等作用。 在日常生活中,你插入汽车钥匙,车辆可以…...
在imx6ull中加入ov5640模块
本来觉得是一件很简单的事情但是走了很多的弯路,记录一下调试过程。 先使用正点原子提供的出厂内核把摄像头影像调试出来,然后cat /dev/video1,看一下video1牵扯到哪些模块,可以看到需要ov5640_camera.ko和 mx6s_capture.ko这两个…...
Kafka中的auto-offset-reset配置
Kafka这个服务在启动时会依赖于Zookeeper,Kafka相关的部分数据也会存储在Zookeeper中。如果kafka或者Zookeeper中存在脏数据的话(即错误数据),这个时候虽然生产者可以正常生产消息,但是消费者会出现无法正常消费消息的…...
TCP/IP_整理起因
先分享一个初级的问题;有个客户现场,终端设备使用客户网络更新很慢,使用手机热点更新速度符合预期;网络部署情况如下: 前期花费了很大的精力进行问题排查对比,怀疑是客户网络问题(其他的客户现…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
