当前位置: 首页 > news >正文

敏捷开发方法

理解:
极限编程(XP):敏捷开发的典型方法之一,是一种轻量级(敏捷)、高效,低风险、柔性、可预测的、科学的软件开发方法,它由价值观、原则、实践和行为4个部分组成。其中4大价值观为沟通、简单性、反馈和勇气。

水晶法(Crystal):水晶方法体系与XP一样,都有以人为中心的理念,但在实践上有所不同。水晶方法体系考虑到人们一般很难严格遵循一个纪律约束很强的过程,认为每一种不同的项目都需要一套不同的策略、约定和方法论。因此,与XP的高度纪律性不同,水晶方法体系探索了用最少纪律约束而仍能成功的方法,从而在产出效率与易于运作上达到一种平衡。也就是说,虽然水晶系列不如XP那样的产出效率,但会有更多的人能够接受并遵循它。

并列争球法(Scrum):用迭代的方法,其中把每30天一次的迭代称为一个“冲刺”,并按需求的优先级来实现产品。多个自组织和自治小组并行地递增实现产品。协调是通过简短的日常会议来进行的。

自适应软件开发(ASD):ASD的核心是三个非线性的、重迭的开发阶段:猜测,合作与学习。

软考错题

相关文章:

敏捷开发方法

理解: 极限编程(XP):敏捷开发的典型方法之一,是一种轻量级(敏捷)、高效,低风险、柔性、可预测的、科学的软件开发方法,它由价值观、原则、实践和行为4个部分组成。其中4大…...

vue 前端实现login页登陆 验证码

实现效果 // template <el-form :model"loginForm" :rules"fieldRules" ref"loginForm" label-position"left" label-width"0px" class"login-container"><span class"tool-bar"></sp…...

python 涉及opencv mediapipe知识,眨眼计数 供初学者参考

基本思路 我们知道正面侦测到人脸时&#xff0c;任意一只眼睛水平方向上的两个特征点构成水平距离&#xff0c;上下两个特征点构成垂直距离 当头像靠近或者远离摄像头时&#xff0c;垂直距离与水平距离的比值基本恒定 根据这一思路 当闭眼时 垂直距离变小 比值固定小于某一个…...

HTTP 和 HTTPS的区别

一、HTTP 1.明文传输&#xff0c;不安全 2.默认端口号&#xff1a;80 3.TCP三次握手即可 二、HTTPS 1.加密传输&#xff0c;更安全(在HTTP层与TCP层之间加上了SSL/TTL安全协议) SSL和TTL是在不同时期的两种叫法&#xff0c;含义相同。 2.默认端口号&#xff1a;443 3.TCP三…...

从零开始训练一个ChatGPT大模型(低资源,1B3)

macrogpt-prertrain 大模型全量预训练(1b3), 多卡deepspeed/单卡adafactor 源码地址&#xff1a;https://github.com/yongzhuo/MacroGPT-Pretrain.git 踩坑 1. 数据类型fp16不太行, 很容易就Nan了, 最好是fp32, tf32, 2. 单卡如果显存不够, 可以用优化器adafactor, 3. 如果…...

从文字到使用,一文读懂Kafka服务使用

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…...

什么是https加密协议?

前言&#xff1a; HTTPS&#xff08;全称&#xff1a;Hypertext Transfer Protocol Secure&#xff09; 是一个安全通信通道&#xff0c;它基于HTTP开发用于在客户计算机和服务器之间交换信息。它使用安全套接字层(SSL)进行信息交换&#xff0c;简单来说它是HTTP的安全版&…...

0012Java程序设计-ssm医院预约挂号及排队叫号系统

文章目录 **摘** **要**目 录系统实现5.2后端功能模块5.2.1管理员功能模块5.2.2医生功能模块 开发环境 摘 要 网络的广泛应用给生活带来了十分的便利。所以把医院预约挂号及排队叫号管理与现在网络相结合&#xff0c;利用java技术建设医院预约挂号及排队叫号系统&#xff0c;实…...

PaddleClas学习3——使用PPLCNet模型对车辆朝向进行识别(c++)

使用PPLCNet模型对车辆朝向进行识别 1 准备环境2 准备模型2.1 模型导出2.2 修改配置文件3 编译3.1 使用CMake生成项目文件3.2 编译3.3 执行3.4 添加后处理程序3.4.1 postprocess.h3.4.2 postprocess.cpp3.4.3 在cls.h中添加函数声明3.4.4 在cls.cpp中添加函数定义3.4.5 在main.…...

学习记录---kubernetes中备份和恢复etcd

一、简介 ETCD是kubernetes的重要组成部分&#xff0c;它主要用于存储kubernetes的所有元数据&#xff0c;我们在kubernetes中的所有资源(node、pod、deployment、service等)&#xff0c;如果该组件出现问题&#xff0c;则可能会导致kubernetes无法使用、资源丢失等情况。因此…...

使用单例模式+观察者模式实现参数配置实时更新

使用vector存储观察者列表 #include <iostream> #include <vector> #include <functional> #include <algorithm>// 配置参数结构体 struct MyConfigStruct {int parameter1;std::string parameter2; };class Config { public:using Observer std::f…...

区块链实验室(28) - 拜占庭节点劫持区块链仿真

在以前的FISCO环境中仿真拜占庭节点攻击区块链网络。该环境共有100个节点&#xff0c;采用PBFT作为共识机制&#xff0c;节点编号分别为&#xff1a;Node0&#xff0c;Node&#xff0c;… &#xff0c;Node99。这100个节点的前2010区块完全相同&#xff0c;自区块2011开始分叉。…...

聊聊AsyncHttpClient的ChannelPool

序 本文主要研究一下AsyncHttpClient的ChannelPool ChannelPool org/asynchttpclient/channel/ChannelPool.java public interface ChannelPool {/*** Add a channel to the pool** param channel an I/O channel* param partitionKey a key used to retrieve the cac…...

[MySQL] MySQL复合查询(多表查询、子查询)

前面我们学习了MySQL简单的单表查询。但是我们发现&#xff0c;在很多情况下单表查询并不能很好的满足我们的查询需求。本篇文章会重点讲解MySQL中的多表查询、子查询和一些复杂查询。希望本篇文章会对你有所帮助。 文章目录 一、基本查询回顾 二、多表查询 2、1 笛卡尔积 2、2…...

[架构之路-256]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件系统不同层次的复用与软件系统向越来越复杂的方向聚合

目录 前言&#xff1a; 一、CPU寄存器级的复用&#xff1a;CPU寄存器 二、指令级复用&#xff1a;二进制指令 三、过程级复用&#xff1a;汇编语言 四、函数级复用&#xff1a;C语言 五、对象级复用&#xff1a;C, Java, Python 六、组件级复用 七、服务级复用 八、微…...

C++初学教程三

目录 一、运算符 一、自增自减运算符 二、位运算符 三、关系运算符...

雷达点云数据.pcd格式转.bin格式

雷达点云数据.pcd格式转.bin格式 注意&#xff0c;方法1原则上可行&#xff0c;但是本人没整好pypcd的环境 方法2是绝对可以的。 方法1 1 源码如下&#xff1a; def pcb2bin1(): # save as bin formatimport os# import pypcdfrom pypcd import pypcdimport numpy as np…...

Fiddler抓包测试

模拟弱网测试 操作&#xff1a;一、Rules - Customize Rules &#xff08;快捷键CtrlR&#xff09;弹出编辑器 二、接着CtrlF查找m_SimulateModem标志位 三、默认上传300ms&#xff0c;下载150ms 四、更改后&#xff0c;继续Rules - Performances - Simulate Modem Speeds勾上 …...

视频处理关键知识

1 引言 视频技术发展到现在已经有100多年的历史&#xff0c;虽然比照相技术历史时间短&#xff0c;但在过去很长一段时间之内都是最重要的媒体。由于互联网在新世纪的崛起&#xff0c;使得传统的媒体技术有了更好的发展平台&#xff0c;应运而生了新的多媒体技术。而多媒体技术…...

LeetCode435. Non-overlapping Intervals

文章目录 一、题目二、题解 一、题目 Given an array of intervals intervals where intervals[i] [starti, endi], return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. Example 1: Input: intervals [[1,2]…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

命令行关闭Windows防火墙

命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)​方法二:CMD命令…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...