PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
- 介绍
- 实验记录
- 训练阶段
- 推断阶段
介绍
论文:Point-Query Quadtree for Crowd Counting, Localization, and More
实验记录
训练阶段
TODO
推断阶段
下面是以一张输入图像作为网络输入的实验过程记录:
1.特征提取:对于一张768×1024的图像,记为input。对input做位置编码得到768*1024的位置编码特征,记为input_pos_embed。input经过vgg19输出两个特征分别为f1(96×128)和f2(192×256),对应sparse特征和dense特征。f1和f2经过encoder网络之后得到enc_src1和enc_src2,尺寸相同。
2.生成分割图:enc_src1和enc_src2经过avg_pool+conv得到一个分割图split_map(12×8),将split_map插值得到分割图split_map_sparse(96×128)和split_map_dense(192×256)。(从代码中上可以看出,split_map_sparse是1减去插值结果得到的,所以split_map_sparse和split_map_dense是互斥的,也就是说,在split_map_sparse中的dense区域在split_map_dense中对应的区域是稀疏的。)

3.网格点获取:原始图像为768×1024,使用stride为8和4获取网格点,分别得到92×128和192×256个网格点索引,根据从input_pos_embed中拿到每个点的位置编码,形状为96×128和192×256,记为query_pos_embed1,query_pos_embed2。对应的点特征是从f1和f2中抽取出来,记为query_points_feature1和query_points_feature2。

4.网格点筛选:这个步骤有点复杂。以split_map_sparse为例,split_map_sparse形状为96×128,将从split_map_sparse分成8×12=96个rectangle,每一个rectangle包含8*16=128个像素,记为div_win(128×96×1),然后筛选大于0.5的像素并在第0维进行累加,对应代码“valid_div = (div_win > 0.5).sum(dim=0)[: , 0] 和v_idx = valid_div > 0 ”,v_idx是一个mask(96,)的(其中17个为false, 79个为true),也就是说在96个rectangle中,但只选择了79个rectangle。query_pos_embed1和query_points_feature1也同样分成96个rectangle,经过筛选后得到query_embed(128×79×256)和query_feats(128×79×256)。enc_src1也被分为96个rectangle,经过筛选后得到memory_win(128×79×256)。

5.Decoding:将上面的query_embed, query_feats,memory_win输入到decoder网络,获得10112(128×79)个输出点,预测10112个偏置,因为train阶段输入图像大小都是256*256,inference阶段输入图像大小各不相同,所以需要对10112个偏置进行rescale(根据256的倍数调整)。同样的操作,对于192×256(dense)特征图,生成4608个输出点。
6.合并预测结果:根据预测的分类标签值,分别从10112个输出点选出56个点,从4608个输出点中选择118个点,合并成174个点, 也就是最终的所有预测点。gt为172,计算mae=(174-172)=2, 计算mse=(174-172)^2=4。
相关文章:
PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
PET(Point-Query Quadtree for Crowd Counting, Localization, and More) 介绍实验记录训练阶段推断阶段 介绍 论文:Point-Query Quadtree for Crowd Counting, Localization, and More 实验记录 训练阶段 TODO 推断阶段 下面是以一张输…...
NgRx中dynamic reducer的原理和用法?
在 Angular 应用中,使用 NgRx 状态管理库时,动态 reducer 的概念通常是指在运行时动态添加或移除 reducer。这样的需求可能源于一些特殊的场景,比如按需加载模块时,你可能需要添加相应的 reducer。 以下是动态 reducer 的一般原理…...
麒麟V10服务器安装Apache+PHP
安装PHP yum install php yum install php-curl php-gd php-json php-mbstring php-exif php-mysqlnd php-pgsql php-pdo php-xml 配置文件 /etc/php.ini 修改参数 date.timezone Asia/Shanghai max_execution_time 60 memory_limit 1280M post_max_size 200M file_upload…...
DOS 批处理 (一)
DOS 批处理 1. 批处理是什么?2. DOS和MS-DOS3. 各种操作系统shell的区别Shell 介绍图形用户界面(GUI)shell命令行界面(CLI)的 shell命令区别 1. 批处理是什么? 批处理(Batch),也称为批处理脚本…...
P1047 [NOIP2005 普及组] 校门外的树题解
题目 某校大门外长度为 l 的马路上有一排树,每两棵相邻的树之间的间隔都是1 米。我们可以把马路看成一个数轴,马路的一端在数轴 00 的位置,另一端在l 的位置;数轴上的每个整数点,即0,1,2,…,l,都种有一棵树…...
pip的常用命令
安装、卸载、更新包:pip install [package-name],pip uninstall [package-name],pip install --upgrade [package-name]。升级pip:pip install --upgrade pip。查看已安装的包:pip list,pip list --outdate…...
力扣面试题 08.12. 八皇后(java回溯解法)
Problem: 面试题 08.12. 八皇后 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 八皇后问题的性质可以利用回溯来解决,将大问题具体分解成如下待解决问题: 1.以棋盘的每一行为回溯的决策阶段,判断当前棋盘位置能否放置棋子 2.如何判…...
2023年第十二届数学建模国际赛小美赛A题太阳黑子预测求解分析
2023年第十二届数学建模国际赛小美赛 A题 太阳黑子预测 原题再现: 太阳黑子是太阳光球上的一种现象,表现为比周围区域暗的暂时斑点。它们是由抑制对流的磁通量浓度引起的表面温度降低区域。太阳黑子出现在活跃区域内,通常成对出现ÿ…...
jsp 分页查询展示,实现按 上一页或下一页实现用ajax刷新内容
要实现按上一页或下一页使用 Ajax 刷新内容,可以按照以下步骤进行操作: 1. 在前端页面中添加两个按钮,分别为“上一页”和“下一页”。当用户点击按钮时,触发 Ajax 请求。 2. 在后端控制器中接收 Ajax 请求,并根据传…...
基于ssm在线云音乐系统的设计与实现论文
摘 要 随着移动互联网时代的发展,网络的使用越来越普及,用户在获取和存储信息方面也会有激动人心的时刻。音乐也将慢慢融入人们的生活中。影响和改变我们的生活。随着当今各种流行音乐的流行,人们在日常生活中经常会用到的就是在线云音乐系统…...
简谈PostgreSQL的wal_level=logic
一、PostgreSQL的wal_levellogic的简介 wal_levellogic 是 PostgreSQL 中的一个配置选项,用于启用逻辑复制(logical replication)功能。逻辑复制是一种高级的数据复制技术,它允许您将变更(例如插入、更新和删除&#…...
自动化巡检实现方法 (一)------- 思路概述
一、自动化巡检需要会的技能 1、因为巡检要求一天24小时全天在线,因此巡检程序程序一定会放在服务器上跑,所以要对linux操作熟悉哦 2、巡检的代码要在git上管理,所以git的基本操作要熟悉 3、为了更方便不会代码的同学操作,所以整个…...
mysql获取时间异常
1.查看系统时间 时区是上海,本地时间正常 [roottest etc]# timedatectlLocal time: 一 2023-12-04 17:00:35 CSTUniversal time: 一 2023-12-04 09:00:35 UTCRTC time: 一 2023-12-04 09:00:34Time zone: Asia/Shanghai (CST, 0800)NTP enabled: no NTP synchroni…...
维基百科文章爬虫和聚类:高级聚类和可视化
一、说明 维基百科是丰富的信息和知识来源。它可以方便地构建为带有类别和其他文章链接的文章,还形成了相关文档的网络。我的 NLP 项目下载、处理和应用维基百科文章上的机器学习算法。 在我的上一篇文章中,KMeans 聚类应用于一组大约 300 篇维基百科文…...
springboot智慧导诊系统源码:根据患者症状匹配挂号科室
一、系统概述 医院智慧导诊系统是在医疗中使用的引导患者自助就诊挂号,在就诊的过程中有许多患者不知道需要挂什么号,要看什么病,通过智慧导诊系统,可输入自身疾病的症状表现,或选择身体部位,在经由智慧导诊…...
Shell脚本如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环
Shell脚本如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环 下面是一个简单的 Shell 脚本示例,演示了如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环。 #!/bin/bash# For循环 echo "For循环示例:…...
n个人排成一圈,数数123离队
#include<stdio.h> int main() { int i, n100,k0,j0,a[1000]{0};//k:数数123的变量,j记录离开队列人数的变量scanf("%d",&n);for(int ii0; ii<n; ii){ for( i0; i<n; i){// printf("wei%d ",i);if((a[i]0)&&…...
深度学习基础回顾
深度学习基础 浅层网络 VS 深层网络深度学习常用的激活函数Sigmoid 函数ReLU 函数Softplus 函数tanh函数 归纳偏置CNN适用数据归纳偏置 RNN适用数据归纳偏置 浅层网络 VS 深层网络 浅层神经网络参数过多,导致模型的复杂度和计算量很高,难以训练。而深层…...
【Vue】修改组件样式并动态添加样式
文章目录 目标修改样式动态添加/删除样式样式不生效 注意:类似效果el-step也可以实现,可以不用手动实现。这里只是练习。 目标 使用组件库中的组件,修改它的样式并动态添加/删除样式。 修改样式 组件中的一些类可能添加样式无法生效。如Ele…...
GO设计模式——12、外观模式(结构型)
目录 外观模式(Facade Pattern) 外观模式的核心角色: 优缺点 使用场景 代码实现 外观模式(Facade Pattern) 外观模式(Facade Pattern)又叫作门面模式,是一种通过为多个复杂的子…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...
跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践
在电商行业蓬勃发展的当下,多平台运营已成为众多商家的必然选择。然而,不同电商平台在商品数据接口方面存在差异,导致商家在跨平台运营时面临诸多挑战,如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...
