当前位置: 首页 > news >正文

B. The Number of Products)厉害

You are given a sequence a1,a2,…,ana1,a2,…,an consisting of nn non-zero integers (i.e. ai≠0ai≠0).

You have to calculate two following values:

  1. the number of pairs of indices (l,r)(l,r) (l≤r)(l≤r) such that al⋅al+1…ar−1⋅aral⋅al+1…ar−1⋅ar is negative;
  2. the number of pairs of indices (l,r)(l,r) (l≤r)(l≤r) such that al⋅al+1…ar−1⋅aral⋅al+1…ar−1⋅ar is positive;

Input

The first line contains one integer nn (1≤n≤2⋅105)(1≤n≤2⋅105) — the number of elements in the sequence.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109;ai≠0)(−109≤ai≤109;ai≠0) — the elements of the sequence.

Output

Print two integers — the number of subsegments with negative product and the number of subsegments with positive product, respectively.

Examples

input

Copy

5
5 -3 3 -1 1

output

Copy

8 7

input

Copy

10
4 2 -4 3 1 2 -4 3 2 3

output

Copy

28 27

input

Copy

5
-1 -2 -3 -4 -5

output

Copy

9 6

给你一个由n个非零整数(即ai≠0)组成的序列a1,a2,...,an。

你必须计算以下两个值。

指数(l,r)的数目(l≤r),使al⋅al+1...ar-1⋅ar为负数。
使得al⋅al+1...ar-1⋅ar为正数的一对索引(l,r)(l≤r)的数量。
输入
第一行包含一个整数n(1≤n≤2⋅105)--序列中的元素数。

第二行包含n个整数a1,a2,...,an (-109≤ai≤109;ai≠0) - 序列的元素。

输出
打印两个整数 - 负积的子段数和正积的子段数,分别为。

意思:

题目意思是说输出负积子段数和正积子段数。既然都是积,那么只要出现负数就可能改变积的正负,也就是说在遍历的时候要考虑出现负数的情况,如果只存在正数,那么直接1+2+3+。。。+n就能得到答案。

 

如果出现负数那么就交换正负数的计数,然后在负数奇数上面+1;

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<stack>
#include<string>
#include<algorithm>
#include<unordered_map>
#include<map>
#include<cstring>
#include<queue>
#include<set>
#include<stdlib.h>
#define dbug cout<<"hear!"<<endl;
#define rep(a,b) for(int i=a;i<=b;i++)
#define rrep(a,b) for(int j=a;j<=b;j++)
#define per(a,b) for(int i=a;i>=b;i--)
#define pper(a,b) for(int j=a;j>=b;j--)
#define no cout<<"NO"<<endl;
#define yes cout<<"YES"<<endl;
using namespace std;
typedef long long ll;
typedef long double ld;
const int N = 2e5 + 100;
const int  INF = 0x3f3f3f3f;
ll gcdd(ll a, ll b)
{if (b) while ((a %= b) && (b %= a));return a + b;
}
const int mod = 998244353;
ll t, n, m, a, b, c, x, k, cnt, ans, ant, sum, q, p, idx;
ll arr[N], brr[N], crr[N];
ll axx[2000][2000];
bool book[N];
char s[N];int main()
{cin >> n;ant = 0;cnt = 0;ans = 0;ll zheng = 0, fu = 0;rep(1, n){cin >> x;if (x > 0){ant++;}else{swap(ant, cnt);cnt++;}zheng += ant;fu += cnt;}cout << fu << ' ' << zheng;
}

 

相关文章:

B. The Number of Products)厉害

You are given a sequence a1,a2,…,ana1,a2,…,an consisting of nn non-zero integers (i.e. ai≠0ai≠0). You have to calculate two following values: the number of pairs of indices (l,r)(l,r) (l≤r)(l≤r) such that al⋅al1…ar−1⋅aral⋅al1…ar−1⋅ar is neg…...

一起Talk Android吧(第五百一十二回:自定义Dialog)

文章目录整体思路实现方法第一步第二步第三步第四步各位看官们大家好&#xff0c;上一回中咱们说的例子是"自定义Dialog主题",这一回中咱们说的例子是" 自定义Dialog"。闲话休提&#xff0c;言归正转&#xff0c; 让我们一起Talk Android吧&#xff01;整体…...

GinVueAdmin源码分析3-整合MySQL

目录文件结构数据库准备配置文件处理config.godb_list.gogorm_mysql.gosystem.go初始化数据库gorm.gogorm_mysql.go开始初始化测试数据库定义实体类 Userserviceapi开始测试&#xff01;文件结构 本文章将使用到上一节创建的 CommonService 接口&#xff0c;用于测试连接数据库…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——MapReduce开发总结

在编写MapReduce程序时&#xff0c;需要考虑如下几个方面&#xff1a; 1、输入数据接口&#xff1a;InputFormat 默认使用的实现类是&#xff1a;TextInputFormatTextInputFormat的功能逻辑是&#xff1a;一次读一行文本&#xff0c;然后将该行的起始偏移量作为key&#xff0…...

requests---(4)发送post请求完成登录

前段时间写过一个通过cookies完成登录&#xff0c;今天我们写一篇通过post发送请求完成登录豆瓣网 模拟登录 1、首先找到豆瓣网的登录接口 打开豆瓣网站的登录接口&#xff0c;请求错误的账号密码&#xff0c;通过F12或者抓包工具找到登录接口 通过F12抓包获取到请求登录接口…...

Python抓取数据具体流程

之前看了一段有关爬虫的网课深有启发&#xff0c;于是自己也尝试着如如何过去爬虫百科“python”词条等相关页面的整个过程记录下来&#xff0c;方便后期其他人一起来学习。 抓取策略 确定目标&#xff1a;重要的是先确定需要抓取的网站具体的那些部分&#xff0c;下面实例是…...

【Python学习笔记】第二十四节 Python 正则表达式

一、正则表达式简介正则表达式&#xff08;regular expression&#xff09;是一个特殊的字符序列&#xff0c;它能帮助你方便的检查一个字符串是否与某种模式匹配。正则表达式是对字符串&#xff08;包括普通字符&#xff08;例如&#xff0c;a 到 z 之间的字母&#xff09;和特…...

数字逻辑基础:原码、反码、补码

时间紧、不理解可以只看这里的结论 正数的原码、反码、补码相同。等于真值对应的机器码。 负数的原码等于机器码&#xff0c;反码为原码的符号位不变&#xff0c;其余各位按位取反。补码为反码1。 三种码的出现是为了解决计算问题并简化电路结构。 在原码和反码中&#xff0c;存…...

有限差分法-差商公式及其Matlab实现

2.1 有限差分法 有限差分法 (finite difference method)是一种数值求解偏微分方程的方法,它将偏微分方程中的连续变量离散化为有限个点上的函数值,然后利用差分逼近导数,从而得到一个差分方程组。通过求解差分方程组,可以得到原偏微分方程的数值解。 有限差分法是一种历史…...

高校就业信息管理系统

1引言 1.1编写目的 1.2背景 1.3定义 1.4参考资料 2程序系统的结构 3登录模块设计说明一 3.1程序描述 3.2功能 3.3性能 3.4输人项 3.5输出项 3.6算法 3.7流程逻辑 3.8接口 3.10注释设计 3.11限制条件 3.12测试计划 3.13尚未解决的问题 4注册模块设计说明 4.…...

【Java|golang】2373. 矩阵中的局部最大值

给你一个大小为 n x n 的整数矩阵 grid 。 生成一个大小为 (n - 2) x (n - 2) 的整数矩阵 maxLocal &#xff0c;并满足&#xff1a; maxLocal[i][j] 等于 grid 中以 i 1 行和 j 1 列为中心的 3 x 3 矩阵中的 最大值 。 换句话说&#xff0c;我们希望找出 grid 中每个 3 x …...

根据指定函数对DataFrame中各元素进行计算

【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】根据指定函数对DataFrame中各元素进行计算以下错误的一项是?import numpy as npimport pandas as pdmyDict{A:[1,2],B:[3,4]}myDfpd.DataFrame(myDict)print(【显示】myDf)print(myDf)print(【…...

【蓝桥杯集训·每日一题】AcWing 3502. 不同路径数

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴一、题目 1、原题链接 3502. 不同路径数 2、题目描述 给定一个 nm 的二维矩阵&#xff0c;其中的每个元素都是一个 [1,9] 之间的正整数。 从矩阵中的任意位置出发&#xf…...

Java - 数据结构,二叉树

一、什么是树 概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a; 1、有…...

模拟QQ登录-课后程序(JAVA基础案例教程-黑马程序员编著-第十一章-课后作业)

【案例11-3】 模拟QQ登录 【案例介绍】 1.案例描述 QQ是现实生活中常用的聊天工具&#xff0c;QQ登录界面看似小巧、简单&#xff0c;但其中涉及的内容却很多&#xff0c;对于初学者练习Java Swing工具的使用非常合适。本案例要求使用所学的Java Swing知识&#xff0c;模拟实…...

【壹】嵌入式系统硬件基础

随手拍拍&#x1f481;‍♂️&#x1f4f7; 日期: 2023.2.28 地点: 杭州 介绍: 日子像旋转毒马&#x1f40e;&#xff0c;在脑海里转不停&#x1f92f; &#x1f332;&#x1f332;&#x1f332;&#x1f332;&#x1f332; 往期回顾 &#x1f332;&#x1f332;&#x1f332…...

当参数调优无法解决kafka消息积压时可以这么做

今天的议题是&#xff1a;如何快速处理kafka的消息积压 通常的做法有以下几种&#xff1a; 增加消费者数增加 topic 的分区数&#xff0c;从而进一步增加消费者数调整消费者参数&#xff0c;如max.poll.records增加硬件资源 常规手段不是本文的讨论重点或者当上面的手段已经使…...

Java线程池源码分析

Java 线程池的使用&#xff0c;是面试必问的。下面我们来从使用到源码整理一下。 1、构造线程池 通过Executors来构造线程池 1、构造一个固定线程数目的线程池&#xff0c;配置的corePoolSize与maximumPoolSize大小相同&#xff0c; 同时使用了一个无界LinkedBlockingQueue存…...

手撕八大排序(下)

目录 交换排序 冒泡排序&#xff1a; 快速排序 Hoare法 挖坑法 前后指针法【了解即可】 优化 再次优化&#xff08;插入排序&#xff09; 迭代法 其他排序 归并排序 计数排序 排序总结 结束了上半章四个较为简单的排序&#xff0c;接下来的难度将会大幅度上升&…...

SAP 详细解析SCC4

事务代码&#xff1a;SCC4&#xff0c;选择一个客户端&#xff0c;点击进入&#xff0c;如图&#xff1a; 一、客户端角色 客户控制&#xff1a;客户的角色&#xff08;生产性&#xff0c;测试&#xff0c;...&#xff09; 此属性表示 R/3 系统中的客户端角色。其中可能包括…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目&#xff0c;核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容&#xff0c;附学习方向和应试技巧&#xff1a; 一、施工组织与进度管理 核心目标&#xff1a; 规…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...