当前位置: 首页 > news >正文

利用SPSS进行神经网络分析过程及结果解读

模拟人类实际神经网络的数学方法问世以来,人们已慢慢习惯了把这种人工神经网络直接称为 神经网络神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣,并且把神经网络这一重要特点看作是解决自动控制中控制器适应能力这个难题的关键钥匙之一。

本例通过几个自变量预测是否有高血压,2个分类变量,一个性别,一个吸烟;3个连续性变量。

利用SPSS进行神经网络分析过程及结果解读-图片1

  需要生成一个分组变量,用于区分训练集以及验证集。我们这个样本70%用于训练。通过计算变量,生成分组变量。

利用SPSS进行神经网络分析过程及结果解读-图片2

利用SPSS进行神经网络分析过程及结果解读-图片3

  参数设置

利用SPSS进行神经网络分析过程及结果解读-图片4

  点击分区,选择生成的分组变量:

利用SPSS进行神经网络分析过程及结果解读-图片5

  点击输出,选择如下参数:

利用SPSS进行神经网络分析过程及结果解读-图片6

  点击保存,勾选预测值和预测概率

利用SPSS进行神经网络分析过程及结果解读-图片7

  点击导出,可以保存相应模型,用于新数据的预测。

利用SPSS进行神经网络分析过程及结果解读-图片8

  结果浏览:

利用SPSS进行神经网络分析过程及结果解读-图片9

  首先是对训练集合检验集的描述

网络信息对神经网络的输入层,隐藏层以及输出层进行描述

下图为程序运行后的神经网络图,线条的粗细代表了权重的大小。

利用SPSS进行神经网络分析过程及结果解读-图片10

  模型摘要以及分类对具体的分类结果以及预测模型的分类结果进行了比较

利用SPSS进行神经网络分析过程及结果解读-图片11

  校准箱型图

利用SPSS进行神经网络分析过程及结果解读-图片12

  ROC曲线下面积评估模型好坏

利用SPSS进行神经网络分析过程及结果解读-图片13

利用SPSS进行神经网络分析过程及结果解读-图片14

  自变量对模型的重要性排行

利用SPSS进行神经网络分析过程及结果解读-图片15

相关文章:

利用SPSS进行神经网络分析过程及结果解读

模拟人类实际神经网络的数学方法问世以来,人们已慢慢习惯了把这种人工神经网络直接称为 神经网络。 神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣&#xff0…...

聚观早报 |东方甄选将上架文旅产品;IBM首台模块化量子计算机

【聚观365】12月6日消息 东方甄选将上架文旅产品 IBM首台模块化量子计算机 新思科技携手三星上新兴领域 英伟达与软银推动人工智能研发 苹果对Vision Pro供应商做出调整 东方甄选将上架文旅产品 东方甄选宣布12月10日将在东方甄选APP上线文旅产品,受这一消息影…...

web服务器之——www服务器的基本配置

目录 一、www简介 1、什么是www 2、www所用的协议 3、WEB服务器 4、主要数据 5、浏览器 二、 网址及HTTP简介 1、HTTP协议请求的工作流程 三、www服务器的类型(静态网站(HTML), 动态网站(jsp python,php,perl)) 1、 仅提供…...

微信小程序 -- ios 底部小黑条样式问题

问题&#xff1a; 如图&#xff0c;ios有的机型底部伪home键会显示在按钮之上&#xff0c;导致点击按钮的时候误触 解决&#xff1a; App.vue <script>export default {wx.getSystemInfo({success: res > {let bottomHeight res.screenHeight - res.safeArea.bott…...

白盒测试:探索软件内部结构的有效方法

引言&#xff1a; 在软件开发过程中&#xff0c;测试是确保软件质量的关键环节。传统的黑盒测试方法主要关注软件的功能和外部行为&#xff0c;而忽略了软件的内部结构和实现细节。然而&#xff0c;随着软件复杂性的增加&#xff0c;仅仅依靠黑盒测试已经无法满足项目的需求。因…...

图论-并查集

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图,求最小生成树Kruskal算法和最近公共祖先(LCA)等. 并查集的基本操作主要有: .1.初始化 2.查询find 3.合并union 一般我们都会采用路径压缩 这样…...

redis-学习笔记(Jedis 通用命令)

flushAll 清空全部的数据库数据 jedis.flushAll();set & get set 命令 get 命令 运行结果展示 exists 判断该 key 值是否存在 当 redis 中存在该键值对时, 返回 true 如果键值对不存在, 返回 false keys 获取所有的 key 值 参数是模式匹配 *代表匹配任意个字符 _代表匹配一…...

C语言:高精度乘法

P1303 A*B Problem - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 第一次画图&#xff0c;略显简陋。 由图可以看出c的小标与x,y下标的关系为x的下标加上y的下标再减一。 由此得到&#xff1a; c [ i j - 1 ] x [ i ] * y [ j ]x #include<stdio.h> #include<st…...

UE4 Niagara学习笔记

需要在其他发射器的同一个粒子位置发射其他粒子就用Spawn Particles from other Emitter 把发射器名字填上去即可 这里Move to Nearest Distance Field Subface GPU&#xff0c;可以将生成的Niagara附着到最近的物体上 使用场景就是做的火苗附着到物体上...

多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实…...

LeetCode205. Isomorphic Strings

文章目录 一、题目二、题解 一、题目 Given two strings s and t, determine if they are isomorphic. Two strings s and t are isomorphic if the characters in s can be replaced to get t. All occurrences of a character must be replaced with another character wh…...

Event Driven设计模式

EDA&#xff08;Event-Driven Architecture&#xff09;是一种实现组件之间松耦合、易扩展的架构方式。一个最简单的EDA设计需要包含如下几个组件&#xff1a; Events&#xff1a;需要被处理的数据。一个Event至少包含两个属性&#xff0c;类型和数据&#xff0c;类型决定了Eve…...

PostgreSql 设置自增字段

一、概述 序列类型是 PostgreSQL 特有的创建一个自增列的方法。包含 smallserial、serial和 bigserial 类型&#xff0c;它们不是真正的类型&#xff0c;只是为了创建唯一标识符列而存在的方便符号。其本质也是调用的序列&#xff0c;序列详情可参考&#xff1a;《PostgreSql 序…...

什么是泊松图像混合

泊松图像混合&#xff08;Poisson Image Editing&#xff09;的原理基于泊松方程。该方法旨在保持图像中的梯度一致性&#xff0c;从而在图像编辑中实现平滑和无缝的混合。以下是泊松图像混合的基本原理和公式&#xff1a; 泊松方程 泊松方程是一个偏微分方程&#xff0c;通常…...

OpenAI 承认 ChatGPT 最近确实变懒,承诺修复问题

文章目录 一. ChatGPT 指令遵循能力下降引发用户投诉1.1 用户抱怨回应速度慢、敷衍回答、拒绝回答和中断会话 二. OpenAI 官方确认 ChatGPT 存在问题&#xff0c;展开调查三. OpenAI 解释模型行为差异&#xff0c;回应用户质疑四. GPT-4 模型变更受人事动荡和延期影响 一. Chat…...

创作活动(四十九)———低代码:美味膳食或垃圾食品?

#低代码&#xff1a;美味膳食或垃圾食品&#xff1f;# 一、什么是低代码 低代码是一种开发方法&#xff0c;通过可视化界面和少量的编码&#xff0c;使开发者能够快速构建应用程序。它的目标是提高开发效率、降低开发成本&#xff0c;并支持快速迭代和敏捷开发。 二、低代码的…...

【DL-TensorFlow遇错】TensorFlow中遇错合集

TensorFlow中遇错合集 一、AttributeError: module tensorflow has no attribute placeholder二、RuntimeError: tf.placeholder() is not compatible with eager execution. 一、AttributeError: module tensorflow has no attribute placeholder 错误原因 tensorflow版本问…...

pymysql代替mysqlclient,解决mysqlclient因版本不兼容无法安装成功而无法连接mysql的问题

pymysql代替mysqlclient&#xff0c;解决mysqlclient因版本不兼容无法安装成功而无法连接mysql的问题 原因&#xff1a;版本或者环境兼容问题&#xff0c;导致如centos或者其他Linux无法安装mysqlclient模块 解决办法&#xff1a;安装pymysql作为替代 在Django中连接MySQL数…...

uni-app 设置当前page界面进入直接变为横屏模式

首先 我们打开项目的 manifest.json 在左侧导航栏中找到 源码视图 然后找到 app-plus 配置 在下面加上 "orientation": [//竖屏正方向"portrait-primary",//竖屏反方向"portrait-secondary",//横屏正方向"landscape-primary",//横屏…...

Mysql的多表联合查询

内连接 隐式内连接 select column from tb1,tb2 where 条件; 显示内连接 关键字&#xff1a;[inner] join on 显示内连接与外连接的不同是新增的关键字&#xff0c;inner join 以及 使用on 替换了where select column from tb1 [inner] join tb2 on 条件; 外连接 左外…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...