当前位置: 首页 > news >正文

JVM垃圾收集器

主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。

HotSpot虚拟机垃圾收集器

HotSpot虚拟机垃圾收集器

这些收集器里,面试的重点是两个——CMSG1

Serial 收集器

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用标记-复制算法,老年代采用标记-整理算法。

Serial/Serial Old 收集器的运行过程如图:

Serial/Serial Old收集器运行示意图

虚拟机的设计者们当然知道 Stop The World 带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

但是 Serial 收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial 收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。

ParNew

ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。

新生代采用标记-复制算法,老年代采用标记-整理算法。

ParNew/Serial Old 收集器运行示意图如下:

ParNew/Serial Old收集器运行示意图

Parallel Scavenge

Parallel Scavenge 收集器是一款新生代收集器,基于标记-复制算法实现,也能够并行收集。和 ParNew 有些类似,但 Parallel Scavenge 主要关注的是垃圾收集的吞吐量——所谓吞吐量,就是 CPU 用于运行用户代码的时间和总消耗时间的比值,比值越大,说明垃圾收集的占比越小。

吞吐量

吞吐量

  • Serial Old

Serial Old 是 Serial 收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。

  • Parallel Old

Parallel Old 是 Parallel Scavenge 收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。

Parallel Scavenge/Parallel Old收集器运行示意图

这是 JDK1.8 默认收集器

使用 java -XX:+PrintCommandLineFlags -version 命令查看

-XX:InitialHeapSize=262921408 -XX:MaxHeapSize=4206742528 -XX:+PrintCommandLineFlags -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseParallelGC
java version "1.8.0_211"
Java(TM) SE Runtime Environment (build 1.8.0_211-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.211-b12, mixed mode)

JDK1.8 默认使用的是 Parallel Scavenge + Parallel Old,如果指定了-XX:+UseParallelGC 参数,则默认指定了-XX:+UseParallelOldGC,可以使用-XX:-UseParallelOldGC 来禁用该功能。

CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
  • 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
  • 并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。

CMS 收集器

CMS 收集器

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:

  • 对 CPU 资源敏感;
  • 无法处理浮动垃圾;
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。

G1收集器

G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.

被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备以下特点:

  • 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
  • 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
  • 空间整合:与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
  • 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在垃圾收集上的时间不得超过 N 毫秒。

G1 收集器的运作大致分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

G1 收集器

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

从 JDK9 开始,G1 垃圾收集器成为了默认的垃圾收集器。

相关文章:

JVM垃圾收集器

主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。 HotSpot虚拟机垃圾收集器 这些收集器里,面试的重点是两个——CMS和G1。 Serial 收集器 Serial(串行)收集器是最基本、历史最悠久的垃圾…...

LeetCode(58)随机链表的复制【链表】【中等】

目录 1.题目2.答案3.提交结果截图 链接: 随机链表的复制 1.题目 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节…...

JVM源码剖析之registerNatives方法

目录 版本信息: 写在前面: 源码论证: 总结: 版本信息: jdk版本:jdk8u40 写在前面: 在Java类库中很多类都有一个registerNatives的native方法,并且写在static静态代码块中进行初…...

HarmonyOS鸿蒙应用开发——数据持久化Preferences

文章目录 数据持久化简述基本使用与封装测试用例参考 数据持久化简述 数据持久化就是将内存数据通过文件或者数据库的方式保存到设备中。HarmonyOS提供两两种持久化方案: Preferences:主要用于保存一些配置信息,是通过文本的形式存储的&…...

C++STL库的 deque、stack、queue、list、set/multiset、map/multimap

deque 容器 Vector 容器是单向开口的连续内存空间, deque 则是一种双向开口的连续线性空 间。所谓的双向开口,意思是可以在头尾两端分别做元素的插入和删除操作,当然, vector 容器也可以在头尾两端插入元素,但是在其…...

Vuex快速上手

一、Vuex 概述 目标:明确Vuex是什么,应用场景以及优势 1.是什么 Vuex 是一个 Vue 的 状态管理工具,状态就是数据。 大白话:Vuex 是一个插件,可以帮我们管理 Vue 通用的数据 (多组件共享的数据)。例如:购…...

计网 - LVS 是如何直接基于 IP 层进行负载平衡调度

文章目录 模型LVS的工作机制初探LVS的负载均衡机制初探 模型 大致来说,可以这么理解(只是帮助我们理解,实际上肯定会有点出入),对于我们的 PC 机来说,物理层可以看成网卡,数据链路层可以看成网卡…...

GEE机器学习——利用支持向量机SVM进行土地分类和精度评定

支持向量机方法 支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的样本点分隔开来,使得两个类别的间隔最大化。具体来说,SVM通过寻找支持向量(即距离超平面最近的样本点),确定…...

【ARM Trace32(劳特巴赫) 使用介绍 13 -- Trace32 断点 Break 命令篇】

文章目录 1. Break.Set1.1 TRACE32 Break1.1.1 Break命令控制CPU的暂停1.2 Break.Set 设置断点1.2.1 Trace32 程序断点1.2.2 读写断点1.2.2.1 变量被改写为特定值触发halt1.2.2.2 设定非值触发halt1.2.2.4 变量被特定函数改写触发halt1.2.3 使用C/C++语法设置断点条件1.2.4 使用…...

【JVM入门到实战】(三) 查看字节码文件的工具

一、 javap -v命令 javap是JDK自带的反编译工具,可以通过控制台查看字节码文件的内容。适合在服务器上查看字节码文件内容。直接输入javap查看所有参数。输入javap -v 字节码文件名称 查看具体的字节码信息。(如果jar包需要先使用 jar –xvf 命令解压&a…...

9:00面试,9:05就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到12月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40…...

无需重启,修改Linux服务器时区

Linux修改服务器时区(无需重启) 1、复制命令:2、使用tzselect命令:3、使用date查看是否修改正确 1、复制命令: cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime2、使用tzselect命令: tzselect按照要…...

【Android嵌入式开发及实训课程实验】【项目1】 图形界面——计算器项目

【项目1】 图形界面——计算器项目 需求分析界面设计实施1、创建项目2、 界面实现实现代码1.activity_main.xml2.Java代码 - MainActivity.java 3、运行测试 注意点结束~ 需求分析 开发一个简单的计算器项目,该程序只能进行加减乘除运算。要求界面美观,…...

利用SPSS进行神经网络分析过程及结果解读

模拟人类实际神经网络的数学方法问世以来,人们已慢慢习惯了把这种人工神经网络直接称为 神经网络。 神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣&#xff0…...

聚观早报 |东方甄选将上架文旅产品;IBM首台模块化量子计算机

【聚观365】12月6日消息 东方甄选将上架文旅产品 IBM首台模块化量子计算机 新思科技携手三星上新兴领域 英伟达与软银推动人工智能研发 苹果对Vision Pro供应商做出调整 东方甄选将上架文旅产品 东方甄选宣布12月10日将在东方甄选APP上线文旅产品,受这一消息影…...

web服务器之——www服务器的基本配置

目录 一、www简介 1、什么是www 2、www所用的协议 3、WEB服务器 4、主要数据 5、浏览器 二、 网址及HTTP简介 1、HTTP协议请求的工作流程 三、www服务器的类型(静态网站(HTML), 动态网站(jsp python,php,perl)) 1、 仅提供…...

微信小程序 -- ios 底部小黑条样式问题

问题&#xff1a; 如图&#xff0c;ios有的机型底部伪home键会显示在按钮之上&#xff0c;导致点击按钮的时候误触 解决&#xff1a; App.vue <script>export default {wx.getSystemInfo({success: res > {let bottomHeight res.screenHeight - res.safeArea.bott…...

白盒测试:探索软件内部结构的有效方法

引言&#xff1a; 在软件开发过程中&#xff0c;测试是确保软件质量的关键环节。传统的黑盒测试方法主要关注软件的功能和外部行为&#xff0c;而忽略了软件的内部结构和实现细节。然而&#xff0c;随着软件复杂性的增加&#xff0c;仅仅依靠黑盒测试已经无法满足项目的需求。因…...

图论-并查集

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图,求最小生成树Kruskal算法和最近公共祖先(LCA)等. 并查集的基本操作主要有: .1.初始化 2.查询find 3.合并union 一般我们都会采用路径压缩 这样…...

redis-学习笔记(Jedis 通用命令)

flushAll 清空全部的数据库数据 jedis.flushAll();set & get set 命令 get 命令 运行结果展示 exists 判断该 key 值是否存在 当 redis 中存在该键值对时, 返回 true 如果键值对不存在, 返回 false keys 获取所有的 key 值 参数是模式匹配 *代表匹配任意个字符 _代表匹配一…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...