大数据云计算——Docker环境下部署Hadoop集群及运行集群案列
大数据云计算——Docker环境下部署Hadoop集群及运行集群案列
 本文着重介绍了在Docker环境下部署Hadoop集群以及实际案例中的集群运行。首先,文章详细解释了Hadoop的基本概念和其在大数据处理中的重要性,以及为何选择在Docker环境下部署Hadoop集群。接着,阐述了在Docker中配置和启动Hadoop集群所需的步骤和技术要点。
 在展示部署过程中,文章包含了针对Docker容器的Hadoop组件设置,并指导读者如何通过Docker Compose或其他相关工具建立一个多节点的Hadoop集群。特别强调了节点间的通信和配置,确保集群可以有效协同工作。
 进一步,本文通过案例描述了在已搭建的Hadoop集群上运行的具体应用场景。案例可能涉及到数据存储、MapReduce任务或其他Hadoop支持的数据处理方式。这些案例旨在展示Hadoop集群在实际大数据处理中的应用和价值。
 通过本文,读者可以深入了解如何利用Docker环境快速搭建Hadoop集群,并通过案例展示集群的运行过程,为大数据云计算中的Hadoop应用提供了实用的指导和参考。
首先查看版本环境(docker中没有下载docker和docker-compose的可以看我上一篇博客
Linux 安装配置Docker 和Docker compose 并在docker中部署mysql和中文版portainer图形化管理界面
查看docker和docker-compose版本:
 docker versiondocker-compose version 
 
OK,环境没问题,我们正式开始Docker中部署hadoop
<Docker中部署Hadoop>
更新系统
sudo apt update 
sudo apt upgrade 
国内加速镜像下载修改仓库源
创建或修改 /etc/docker/daemon.json 文件
sudo vi /etc/docker/daemon.json{"registry-mirrors": [ "http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn","https://registry.docker-cn.com","https://kfp63jaj.mirror.aliyuncs.com"]
} 
重载docker让CDN配置生效
sudo systemctl daemon-reloadsudo systemctl restart docker 
抓取ubuntu 20.04的镜像作为基础搭建hadoop环境
sudo docker pull ubuntu:20.04 
使用该ubuntu镜像启动,填写具体的path替代
sudo docker run -it -v <host-share-path>:<container-share-path> ubuntu
例如
sudo docker run -it -v ~/hadoop/build:/home/hadoop/build ubuntu  
容器启动后,会自动进入容器的控制台
在容器的控制台安装所需软件
apt-get update 
apt-get upgrade 
安装所需软件
apt-get install net-tools vim openssh-server  
/etc/init.d/ssh start让ssh服务器自动启动
vi ~/.bashrc在文件的最末尾按O进入编辑模式,加上:
/etc/init.d/ssh start  
按ESC返回命令模式,输入:wq保存并退出。
让修改即刻生效
source ~/.bashrc 
配置ssh的无密码访问
ssh-keygen -t rsa连续按回车
 
cd ~/.sshcat id_rsa.pub >> authorized_keys 
进入docker中ubuntu里面的容器
docker start 11f9454b301fdocker exec -it clever_gauss  bash 
安装JDK 8
hadoop 3.x目前仅支持jdk 7, 8
apt-get install openjdk-8-jdk在环境变量中引用jdk,编辑bash命令行配置文件
vi ~/.bashrc在文件的最末尾加上
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/export PATH=$PATH:$JAVA_HOME/bin 
让jdk配置即刻生效
source ~/.bashrc 
测试jdk正常运作
java -version 
将当前容器保存为镜像
sudo docker commit <CONTAINER ID> <IMAGE NAME> #自己起的镜像名字
 sudo docker commit 11f9454b301f  ubuntu204 #我的是ubuntu204 
可以看到该镜像已经创建成功,下次需要新建容器时可直接使用该镜像
 
注意!!!此过程的两个相关路径如下(不要搞混了):
 <host-share-path>指的是~/hadoop/build
 <container-share-path>指的是/home/hadoop/build
下载hadoop,下面以3.2.3为例
https://hadoop.apache.org/releases.html
cd  ~/hadoop/buildwget https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz(这种方法能下载但是会出现下载的包大小不对,我们可以用第二种方法)
方法二:
在自己电脑浏览器输入下载https://dlcdn.apache.org/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz
下载到自己电脑上 通过winscp上传到虚拟机中
 
然后有安装包的目录打开终端, 输入
sudo mv hadoop-3.2.3.tar.gz ~/hadoop/build移动文件到目录 ~/hadoop/build
 
在容器控制台上解压hadoop(就是之前创建的容器的控制台,不是自己的控制台!
docker start 11f9454b301fdocker exec -it clever_gauss  bashcd /home/hadoop/buildtar -zxvf hadoop-3.2.3.tar.gz -C /usr/local 
  
安装完成了,查看hadoop版本
cd /usr/local/hadoop-3.2.3./bin/hadoop version 
为hadoop指定jdk位置
vi etc/hadoop/hadoop-env.sh 
查找到被注释掉的JAVA_HOME配置位置,更改为刚才设定的jdk位置
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/hadoop联机配置
配置core-site.xml文件
vi etc/hadoop/core-site.xml加入:
<configuration><property><name>hadoop.tmp.dir</name><value>file:/usr/local/hadoop-3.2.3/tmp</value><description>Abase for other temporary directories.</description></property><property><name>fs.defaultFS</name><value>hdfs://master:9000</value></property>
</configuration> 
配置hdfs-site.xml文件
vi etc/hadoop/hdfs-site.xml 
加入
<configuration><!--- 配置保存Fsimage位置 --><property><name>dfs.namenode.name.dir</name><value>file:/usr/local/hadoop-3.2.3/namenode_dir</value></property><!--- 配置保存数据文件的位置 --><property><name>dfs.datanode.data.dir</name><value>file:/usr/local/hadoop-3.2.3/datanode_dir</value></property><property><name>dfs.replication</name><value>3</value></property> </configuration>
 
MapReduce配置
该配置文件的定义:
https://hadoop.apache.org/docs/r<Hadoop版本号>/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
配置mapred-site.xml文件
vi etc/hadoop/mapred-site.xml 
加入:
<configuration><!--- mapreduce框架的名字 --><property><name>mapreduce.framework.name</name><value>yarn</value></property><! -- 设定HADOOP的位置给yarn和mapreduce程序 --><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property>
</configuration> 
配置yarn-site.xml文件
vi etc/hadoop/yarn-site.xml 
加入
<configuration>
<!-- Site specific YARN configuration properties --><!-- 辅助服务,数据混洗 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.resourcemanager.hostname</name><value>master</value></property>
</configuration> 
服务启动权限配置
配置start-dfs.sh与stop-dfs.sh文件
vi sbin/start-dfs.sh 和 vi sbin/stop-dfs.shvi sbin/start-dfs.shHDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root 
继续修改配置文件
vi sbin/stop-dfs.shHDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root 
配置start-yarn.sh与stop-yarn.sh文件
vi sbin/start-yarn.sh 和 vi sbin/stop-yarn.shvi sbin/start-yarn.shYARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root 
vi sbin/stop-yarn.shYARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root 
核心文件一定不能配错,否则后面会出现很多问题!
配置完成,保存镜像
docker ps
docker commit 11f9454b301f ubuntu-myx保存的镜像名为 ubuntu-myx
 
  
启动hadoop,并进行网络配置
打开三个宿主控制台,启动一主两从三个容器
master
打开端口映射:8088 => 8088
sudo docker run -p 8088:8088 -it -h master --name master ubuntu-myx 
启动节点worker01
sudo docker run -it -h worker01 --name worker01 ubuntu-myx 
节点worker02
sudo docker run -it -h worker02 --name worker02 ubuntu-myx 
 
分别打开三个容器的/etc/hosts,将彼此的ip地址与主机名的映射信息补全(三个容器均需要如此配置)
vi /etc/hosts使用以下命令查询ip
ifconfig 
添加信息(每次容器启动该文件都需要调整)
172.17.0.3 master
172.17.0.4 worker01
172.17.0.5 worker02
 
  
 
检查配置是否有效
ssh masterssh worker01ssh worker02master 连接worker01节点successfully:
 
worker01节点连接master 成功:
 
worker02连接worker01节点successfully:
 
在master容器上配置worker容器的主机名
cd /usr/local/hadoop-3.2.3vi etc/hadoop/workers 
删除localhost,加入
worker01
worker02
 
网络配置完成
启动hadoop
在master主机上
cd /usr/local/hadoop-3.2.3./bin/hdfs namenode -format正常启动
 
 
启动服务
./sbin/start-all.sh 
效果如下表示正常
 
在hdfs上建立一个目录存放文件
假设该目录为:/home/hadoop/input
./bin/hdfs dfs -mkdir -p /home/hadoop/input./bin/hdfs dfs -put ./etc/hadoop/*.xml /home/hadoop/input 
查看分发复制是否正常
./bin/hdfs dfs -ls /home/hadoop/input 
运行案例:
在hdfs上建立一个目录存放文件
例如
./bin/hdfs dfs -mkdir -p /home/hadoop/wordcount把文本程序放进去
./bin/hdfs dfs -put hello /home/hadoop/wordcount查看分发情况
./bin/hdfs dfs -ls /home/hadoop/wordcount 
 
运行MapReduce自带wordcount的示例程序(自带的样例程序运行不出来,可能是虚拟机性能的问题,这里就换成了简单的wordcount程序)
./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.3.jar wordcount /home/hadoop/wordcount /home/hadoop/wordcount/output 
运行成功:
 
  
运行结束后,查看输出结果
./bin/hdfs dfs -ls /home/hadoop/wordcount/output./bin/hdfs dfs -cat /home/hadoop/wordcount/output/* 
至此,Docker部署hadoop成功!跟着步骤走一般都没有什么问题。
相关文章:
 
大数据云计算——Docker环境下部署Hadoop集群及运行集群案列
大数据云计算——Docker环境下部署Hadoop集群及运行集群案列 本文着重介绍了在Docker环境下部署Hadoop集群以及实际案例中的集群运行。首先,文章详细解释了Hadoop的基本概念和其在大数据处理中的重要性,以及为何选择在Docker环境下部署Hadoop集群。接着&…...
计算机网络链路层(期末、考研)
计算机网络总复习链接🔗 目录 组帧差错控制检错编码纠错编码 流量控制与可靠传输机制流量控制、可靠传输与滑动窗口机制单帧窗口与停止-等待协议多帧滑动窗口与后退N帧协议(GBN)多帧滑动窗口与选择重传协议 介质访问控制信道划分介质访问控制…...
 
洛谷 P8794 [蓝桥杯 2022 国 A] 环境治理
文章目录 [蓝桥杯 2022 国 A] 环境治理题目链接题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路解析CODE给点思考 [蓝桥杯 2022 国 A] 环境治理 题目链接 https://www.luogu.com.cn/problem/P8794 题目描述 LQ 国拥有 n n n 个城市,从 0 0 …...
力扣面试150题 | 买卖股票的最佳时期
力扣面试150题 | 买卖股票的最佳时期 题目描述解题思路代码实现 题目描述 121.买卖股票的最佳时期 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一…...
 
uniapp 之 图片 视频 文件上传
<view class"" style"padding: 24rpx 0"><text>相关资料 <text class"fs-26 color-666">(图片、视频、文档不超过9个)</text> </text><view class"flex align-center" style&…...
 
MIT线性代数笔记-第28讲-正定矩阵,最小值
目录 28.正定矩阵,最小值打赏 28.正定矩阵,最小值 由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时,正定矩阵有以下四种判定方法(都是充要条件): 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正&…...
 
Python:五种算法RFO、GWO、DBO、HHO、SSA求解23个测试函数
一、五种算法介绍 (1)红狐优化算法(Red fox optimization,RFO) (2)灰狼优化算法(Grey Wolf Optimizer,GWO) (3)蜣螂优化算法(Dung beetle opti…...
如何参与开源项目
大家好,受卡哥邀请,和大家分享一下开源活动的相关经验。首先简要自我介绍一下,我目前在一所985研二在读,主要学习大数据方向,从去年开始参与开源活动近一年时间,也对多个Apache框架有所贡献。 由于学校或专…...
 
twitter开发如何避坑
此篇介绍在twitter开发过程中遇到的坑(尤其是费用的坑)。 一坑:免费接口少! 刚开始申请免费API使用的时候,twitter官方只会给你三个免费接口使用。 发twitter、删推文、查看用户信息。 这三个接口远远不够开发中使用…...
 
人工智能算法合集
人工智能(Artificial Intelligence,AI)作为当今世界最热门的技术领域之一,正日益改变着我们的生活方式、工作方式甚至整个社会结构。在人工智能领域中,算法是至关重要的一环,它们是实现人工智能技术应用的核…...
 
PythonStudio:一款国人写的python及窗口开发编辑IDE,可以替代pyqt designer等设计器了
本款软件只有十几兆,功能算是强大的,国人写的,很不错的python界面IDE.顶部有下载链接。下面有网盘下载链接,或者从官网直接下载。 目前产品免费,以后估计会有收费版本。主页链接:PythonStudio-硅量实验室 作…...
 
大模型应用_FastGPT
1 功能 整体功能,想解决什么问题 官方说明:FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!个人体会…...
 
elasticsearch|大数据|elasticsearch的api部分实战操作以及用户和密码的管理
一, 前言 本文主要内容是通过elasticsearch的api来进行一些集群的管理和信息查询工作,以及elasticsearch用户的增删改查和密码的重设以及重置如何操作 接上文:elasticsearch|大数据|elasticsearch低版本集群的部署安装和安全增强---密码设…...
 
Android多进程和跨进程通讯方式
前言 我们经常开发过程中经常会听到线程和进程,在讲述Android进程多进程前我打算先简单梳理一下这俩者。 了解什么是进程与线程 进程: 系统中正在运行的一个应用程序,某个程序一旦运行就是一个进程,是资源分配的最小单位&#…...
通过Jenkins将应用发布到K8s1.24.3
一、准备基础环境 cat >> /etc/hosts <<EOF 192.168.180.210 k8s-master 192.168.180.200 k8s-node1 192.168.180.190 k8s-node2 192.168.180.180 gitlab 192.168.180.170 jenkins 192.168.180.160 harbor EOF 配置主机名 hostnamectl set-hostname k8s-master &am…...
正则表达式入门与实践
文章目录 一、为什么要有正则二、正则表达式基础概念三、Pattern与Matcher类的使用(一)Pattern类的常用方法(二)Matcher类的常用方法四、常用正则规则及其含义(一)规范表示(二)数量表示(三)逻辑运算符五、String对正则表达式的支持六、实践演练(一)匹配给定文本中的…...
 
C++初阶(十六)优先级队列
📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、priority_queue的介绍和使用1、priority_queue的介绍2、priority_queue的使用 二、priori…...
 
深入探索C语言中的二叉树:数据结构之旅
引言 在计算机科学领域,数据结构是基础中的基础。在众多数据结构中,二叉树因其在各种操作中的高效性而脱颖而出。二叉树是一种特殊的树形结构,每个节点最多有两个子节点:左子节点和右子节点。这种结构使得搜索、插入、删除等操作…...
如何发现服务器被入侵了,服务器被入侵了该如何处理?
作为现代社会的重要基础设施之一,服务器的安全性备受关注。服务器被侵入可能导致严重的数据泄露、系统瘫痪等问题,因此及时排查服务器是否被侵入,成为了保障信息安全的重要环节。小德将给大家介绍服务器是否被侵入的排查方案,并采…...
 
CSDN一键注释功能
这是什么牛逼哄哄的功能 看这里: 然后: 再试一个: 输出结果是?package yuyi03.interview;/*** ClassName: InterviewTest2* Package: yuyi03.interview* Description:** Author 雨翼轻尘* Create 2023/12/14 0014 0:08*/ publ…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
 
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
 
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
 
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
 
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
 
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
 
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
 
Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
