基于轻量级YOLO开发构建中国象棋目标检测识别分析系统
关于棋类相关的项目在我之前的博文里面都有做过,如下:
《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》
《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》
《基于yolov5s实践国际象棋目标检测模型开发》
细心的话可以看到我其实之前就已经做过了中国象棋检测的项目了,但是由于之前的数据集是我基于数据仿真生成的显得跟实际差距很大,所以最近重新找时间基于真实的数据集重构了一版模型,这里的数据来源于网络视频或者游戏网站录屏手工标注所得,说实在的标注中国象棋这种种类繁多且相对较为密集的数据集来说真的是挺痛苦的。。。
闲话就说到这里,接下来看下效果:

好在是实际做出来后效果很好,算是一种慰藉吧。
接下来看下数据集:

YOLO格式数据标注文件如下:

实例标注内容如下:
1 0.170139 0.104206 0.097222 0.083178
1 0.933449 0.102336 0.114583 0.086916
8 0.27662 0.102804 0.101852 0.084112
8 0.714699 0.105607 0.116898 0.091589
5 0.387731 0.102336 0.099537 0.086916
5 0.603588 0.101402 0.107639 0.094393
7 0.501157 0.106075 0.097222 0.092523
3 0.280671 0.277103 0.112269 0.079439
3 0.929398 0.276168 0.106481 0.090654
3 0.173611 0.890187 0.113426 0.1
3 0.819444 0.88972 0.101852 0.097196
0 0.064815 0.37243 0.104167 0.096262
0 0.280093 0.365421 0.113426 0.085981
0 0.496528 0.366355 0.108796 0.082243
0 0.929977 0.369626 0.109954 0.088785
4 0.820023 0.281776 0.107639 0.086916
4 0.5 0.277103 0.106481 0.086916
4 0.715278 0.715421 0.099537 0.090654
4 0.174769 0.718692 0.111111 0.084112
10 0.060764 0.628037 0.103009 0.08972
10 0.282407 0.626168 0.111111 0.085981
10 0.49537 0.631776 0.106481 0.08785
10 0.929398 0.628505 0.106481 0.094393
10 0.71412 0.450467 0.094907 0.08972
9 0.497685 0.720093 0.113426 0.096262
9 0.282986 0.892991 0.100694 0.092523
6 0.38831 0.891589 0.091435 0.08972
6 0.609375 0.890187 0.103009 0.086916
2 0.497106 0.894393 0.103009 0.091589VOC格式数据标注文件如下:

考虑到种类比较多,这里轻量级模型没有直接使用n系列的模型,而是使用了s系列的模型,如下:
#Parameters
nc: 11 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32#Backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]#Head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
默认是100次的迭代计算,日志输出如下:



从评估结果上面来看检测识别的效果还是很好的。
【混淆矩阵】

【F1值曲线】

【PR曲线】

【精确率-召回率曲线】

【数据可视化】

相关文章:
基于轻量级YOLO开发构建中国象棋目标检测识别分析系统
关于棋类相关的项目在我之前的博文里面都有做过,如下:《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》《基于yolov5s实践国际象棋目…...
机器学习100天(三十五):035 贝叶斯公式
《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,根据我们之…...
大话数据结构-栈
1 概述 栈(Stack)是限定仅在表尾进行插入和删除操作的线性表。 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈,栈又称为后进…...
javaFx实现放大镜效果——圆形、矩形、三角形放大镜,拖动调整放大镜大小,设置放大倍数
系列文章专栏:javafx图形绘制、桌面录屏录音源码合集 目录 一、实现的效果 二、实现思路 三、程序实现...
什么是客户忠诚度?建立忠诚文化的 5 种方法
客户忠诚度影响企业的各个方面,例如收入、品牌形象、预算分配和产品路线图。拥有忠实的客户群对于建立成功的企业至关重要,因为您的客户是您的主要拥护者,有助于为您的企业营造积极的氛围。 什么是客户忠诚度? 客户忠诚度衡量客户…...
【ROS2知识】关于colcon编译和ament指定
一、说明 这里说说编译和包生成的操作要点,以python包为例。对于初学者来说,colcon和ament需要概念上搞清楚,与此同时,工作空间、包、节点在一个工程中需要熟练掌握。本文以humble版的ROS2,进行python编程的实现。 二、…...
数据结构: 最小栈
最小栈的特色是保持栈后进先出的特性,同时能够以O(1)复杂度获得当前栈的最小值。 栈是比较好实现的,直接搞个链表,从头部删除和添加即可。 最小栈的核心逻辑是: 因为栈是后进先出的,因此栈顶元素之下的数字永远在栈…...
STM32之PWM
PWMPWM,英文名Pulse Width Modulation,是脉冲宽度调制缩写,它是通过对一系列脉冲的宽度进行调制,等效出所需要的波形(包含形状以及幅值),对模拟信号电平进行数字编码,也就是说通过调…...
操作系统(1.1)--引论
目录 一、操作系统的目标和作用 1.操作系统的目标 2.操作系统的作用 2.1 OS作为用户与计算机硬件系统之间的接口 2.2 OS作为计算机系统资源的管理者 2.3 0S实现了对计算机资源的抽象 3. 推动操作系统发展的主要动力 二、操作系统的发展过程 1.无操作系统的计算机系统…...
Spring boot + mybatis-plus 遇到 数据库字段 创建不规范 大驼峰 下划线 导致前端传参数 后端收不到参数 解决方案
最近使用springboot 连接了一个 sqlserver 数据库 由于数据库年数久远 ,建表字段不规范 大驼峰 下划线的字段名都有 但是 java 中 Spring boot mybatis-plus 又严格按照小驼峰 格式 生成实体类 如果不是小驼峰格式 Data 注解 get set 方法 在前端请求参数 使用这个…...
JavaScript String 字符串对象
文章目录JavaScript String 字符串对象JavaScript 字符串字符串(String)在字符串中查找字符串内容匹配替换内容字符串大小写转换字符串转为数组特殊字符字符串属性和方法JavaScript String 字符串对象 String 对象用于处理已有的字符块。 JavaScript 字…...
Lazada如何做好店铺运营?产品定价是关键
1.东南亚各国状况一览(对比中国) 2.东南亚消费水平真的很低? 精准定价的意义:定价过高,失去核心竞争力;定价过低,亏本对市场失去信心;价格改动,流量下降 定价公式&#…...
空口协议Eapol、802.11 Action、802.11 BAR 和 802.11BA、802.11 Encrypted Data讲解
如下报文 可以看到,除了有之前开放认证的报文之外,还多了 EAPOL 次握手的报文。另外,还有其他几种类型的报文:802.11 Action、802.11 BAR 和 802.11BA、802.11 Encrypted Data 密匙认证协议EAPOL: EAP是Extensible Authentication Protocol的缩写,EAPOL就是(EAP…...
C++类和对象
目录 一、C类定义 二、定义C对象 三、访问数据成员 四、类和对象详解 C 在 C 语言的基础上增加了面向对象编程,C 支持面向对象程序设计。类是 C 的核心特性,通常被称为用户定义的类型。 类用于指定对象的形式,它包含了数据表示法和用于处…...
Leetcode.面试题 05.02 二进制数转字符串
题目链接 面试题 05.02 二进制数转字符串 Mid 题目描述 二进制数转字符串。给定一个介于0和1之间的实数(如0.72),类型为double,打印它的二进制表达式。如果该数字无法精确地用32位以内的二进制表示,则打印“ERROR”。…...
UDPTCP网络编程
udp编程接口 一个UDP程序的编写可以分为3步: 创建一个网络套接字: 它相当于文件操作时的文件描述符,是一个程序进行网络通讯的门户, 所有的网络操作都要基于它 绑定IP和端口: 需要为网络套接字填充IP和端口信息 但是…...
【微信小程序】-- 全局配置 -- tabBar(十七)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...
Cortex-A7中断控制器GIC
Cortex-A7中断控制器GIC 中断号 芯片内部的中断都会引起IRQ InterruptGIC将所有的中断源(最多1020个中断ID)分为三类: SPI(SharedPeripheralInterrupt)共享中断,外部中断都属于SPI中断 [ID32-1019]PPI(PrivatePeripheralInterrupt)私有中断 [ID16-31]SGI(Software-…...
JavaSE:常用类
前言从现在开始进入高级部分的学习,鼓励自己一下!画个大饼: 常用类->集合框架->IO流->多线程->网络编程 ->注解与反射->GUI很重要的东西,不能不会!Object类祖宗类,主要方法:t…...
Element中树形控件在项目中的实际应用
文章目录1、使用目的2、官网组件3、组合使用组件案例4、在项目中实际应用4.1 组合组件的使用4.1.2 代码落地4.1.3 后台接口数据4.1.4 实际效果官网连接直达:Tree树形控件的使用 1、使用目的 用清晰的层级结构展示信息,可展开或折叠。 2、官网组件 <…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
