当前位置: 首页 > news >正文

MySQL 问题总结

什么是MVCC? 说说MySQL实现MVCC的原理?

MVCC,全称Multi-Version Concurrency Control,即多版本并发控制。MVCC是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问。
对于「读已提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同,大家可以把 Read View 理解成一个数据快照,就像相机拍照那样,定格某一时刻的风景。「读已提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个Read View,然后整个事务期间都在用这个 Read View
基础知识
creator_trx_id:创建该Read View的事务事务id
m_ids:创建Read View时,当前数据库中 活跃且未提交的事务的id列表活跃事务”指的就是,启动了但还没提交的事务
min_trx_id:创建Read View时,当时数据库中活跃且未提交的事务中最小的事务的id,也就是 m_ids 的最小值。
max_trx_id:创建Read View时,当前数据库中应该给下一个事务的id值,也就是全局事务中最大的事务 id 值 + 1;
聚簇索引记录中的两个隐藏列:trx_id和roll_pointer
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8MLAi8bT-1677727928848)(en-resource://database/2289:1)]

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer:每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。
    规则
  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 前已经提交的事务生成的,所以该版本的记录对当前事务可见。
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 后才启动的事务生成的,所以该版本的记录对当前事务不可见。
  • 如果记录的 trx_id 值在 Read View 的 min_trx_id 和 max_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中
    如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见。如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见
Buffer Pool、Redo Log Buffer 和undo log、redo log、bin log 概念以及关系?

Buffer Pool 是 MySQL 的一个非常重要的组件,因为针对数据库的增删改操作都是在 Buffer Pool 中完成的;
Undo log 记录的是数据操作前的样子
redo log 记录的是数据被操作后的样子(redo log 是 Innodb 存储引擎特有)
bin log 记录的是整个操作记录(这个对于主从复制具有非常重要的意义)

MyISam和InnoDB区别区别:
  1. InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL语言都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务; 2. InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MYISAM会失败;
  2. InnoDB是聚集索引,使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的(表数据文件本身就是按B+Tree组织的一个索引结构),必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。因此,主键不应该过大,因为主键太大,其他索引也都会很大。MyISAM是非聚集索引,也是使用B+Tree作为索引结构,索引和数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。也就是说:InnoDB的B+树主键索引的叶子节点就是数据文件,辅助索引的叶子节点是主键的值;而MyISAM的B+树主键索引和辅助索引的叶子节点都是数据文件的地址指针。
    4.InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快(注意不能加有任何WHERE条件);那么为什么InnoDB没有了这个变量呢? 因为InnoDB的事务特性,在同一时刻表中的行数对于不同的事务而言是不一样的,因此count统计会计算对于当前事务而言可以统计到的行数,而不是将总行数储存起来方便快速查询。InnoDB会尝试遍历一个尽可能小的索引除非优化器提示使用别的索引。如果二级索引不存在,InnoDB还会尝试去遍历其他聚簇索引。 如果索引并没有完全处于InnoDB维护的缓冲区(Buffer Pool)中,count操作会比较费时。可以建立一个记录总行数的表并让你的程序在INSERT/DELETE时更新对应的数据。和上面提到的问题一样,如果此时存在多个事务的话这种方案也不太好用。如果得到大致的行数值已经足够满足需求可以尝试SHOW TABLE STATUS
  3. Innodb不支持全文索引,而MyISAM支持全文索引,在涉及全文索引领域的查询效率上MyISAM速度更快高;PS:5.7以后的InnoDB支持全文索引了
  4. MyISAM表格可以被压缩后进行查询操作
  5. InnoDB支持表、行(默认)级锁,而MyISAM支持表级锁; InnoDB的行锁是实现在索引上的,而不是锁在物理行记录上。潜台词是,如果访问没有命中索引,也无法使用行锁,将要退化为表锁。
    8、InnoDB表必须有唯一索引(如主键)(用户没有指定的话会自己找/生产一个隐藏列Row_id来充当默认主键),而Myisam可以没有
    9、Innodb存储文件有frm、ibd,而Myisam是frm、MYD、MYI。 Innodb:frm是表定义文件,ibd是数据文件;Myisam:frm是表定义文件,myd是数据文件,myi是索引文件
说下MySQL的索引有哪些吧?

按数据结构分类可分为:B+tree索引、Hash索引、Full-text索引。
按物理存储分类可分为:聚簇索引、二级索引(辅助索引|非聚簇索引)。
按字段特性分类可分为:主键索引、普通索引、前缀索引。
按字段个数分类可分为:单列索引、联合索引(复合索引、组合索引)。

什么是B+树?为什么B+树成为主要的SQL数据库的索引实现?

什么是B+Tree?
B-Tree又叫做B树,和平衡二叉树不同的地方在于B树是多叉树(平衡多路查找树);B+Tree是B树的变种,基于BTree 和叶子节点顺序访问指针进行实现,它具有BTree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。在 B+Tree 中,一个节点中的 key 从左到右非递减排列。
为什么B+树成为主要的SQL数据库的索引实现?
二叉查找树的特点是一个节点的左子树的所有节点都小于这个节点,右子树的所有节点都大于这个节点。当每次插入的元素都是二叉查找树中最大的元素,二叉查找树就会退化成了一条链表,查找数据的时间复杂度变成了 O(n);为了解决二叉查找树会在极端情况下退化成链表的问题,后面就有人提出平衡二叉查找树(AVL 树),
主要是在二叉查找树的基础上增加了一些条件约束:每个节点的左子树和右子树的高度差不能超过 1(自平衡),然而不管平衡二叉查找树还是红黑树,都会随着插入的元素增多,而导致树的高度变高,这就意味着磁盘 I/O 操作次数多,会影响整体数据查询的效率(根本原因是因为它们都是二叉树,也就是每个节点只能保存 2 个子节点)。
为了解决降低树的高度的问题,后面就出来了B树,它不再限制一个节点就只能有 2 个子节点,而是允许 M 个子节点 (M>2),从而降低树的高度。因为节点数据量的问题,B树过渡到了B+树。
索引的核心是,提高每次io的有效数据,因为io相对于cpu、内存来讲,速度差着数量级。B+Tree是B TREE的变种,B TREE能解决的问题,B+TREE也能够解决(降低树的高度,增大节点存储数据量)

  1. B+树的中间节点不存储卫星数据,所以同样大小的磁盘页可以容纳更多的节点元素,如此一来,相同数量的数据下,B+树就相对来说要更加矮胖些,磁盘IO的次数更少
  2. 由于只有叶子节点才保存卫星数据,B+树每次查询都要到叶子节点;而B树每次查询则不一样,最好的情况是根节点,最坏的情况是叶子节点,没有B+树稳定
  3. B+树天然具备排序功能,由于B+树所有的叶子节点数据构成了一个有序链表,在查询范围区间数据的时候会更加方便,数据紧密性很好高;
  4. B+树全节点遍历更快:B+树遍历整棵树只需要遍历所有的叶子节点即可,而B树需要对每一层进行遍历,所以B+树更有利于全表扫描;
    公众号
事务的ACID属性为保证数据库的一致性,在事务处理之前和之后,都要遵循某些属性,也就是大家耳熟能详的ACID属性
  • 原子性(Atomicity):即不可分割性,事务中的操作要么全不做,要么全做;通过 undo log (重做日志)来保证的;
  • 一致性(Consistency):一个事务在执行前后,数据库必须满足正确的状态,满足完整性约束;通过其余三个特点实现
  • 隔离性(Isolation):多个事务并发执行时,一个事务的执行不应该影响其它事务的执行;通过 MVCC(多版本并发控制) 或锁机制来保证的;
  • 持久性(Durability):事务处理完成后,对数据的修改是永久性的,即便系统故障也不会丢失;通过 redo log(重做日志)来保证的
并发事务处理带来的问题
  1. 脏读:一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致的状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此作进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象的叫做“脏读”。概括为:事务A读取到了事务B已经修改但尚未提交的数据,还在这个数据基础上做了操作。此时,如果B事务回滚,A读取的数据无效,不符合一致性要求
  2. 不可重复读: 一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现 其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。概括为:事务A读取到了事务B已经提交的修改的数据。(核心思想是读到了已经提交的数据,但是和第一次读到的不一样)
  3. 幻读:一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。概括为:事务A读取到了事务B提交的新增数据,不符合隔离性
数据库隔离级别
  • 读未提交(read uncommitted),指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读提交(read committed),指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读(repeatable read),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(serializable );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;
隔离级别脏读不可重复读幻读
读未提交(Read Uncommitted)可能可能可能
读已提交(Read Committed)不可能可能可能
可重复读(Repeatable Read)不可能不可能可能
串行读(Serializable)不可能不可能不可能
MySQL 锁的类型有哪些呢?

MySQL锁可以按模式分类为:乐观锁与悲观锁。
按粒度分可以分为全局锁、表级锁、页级锁、行级锁。
按属性可以分为:共享锁、排它锁。
按状态分为:意向共享锁、意向排它锁。
按算法分为:间隙锁、临键锁、记录锁。
按粒度
全局锁:对整个数据库实例加锁,应用在全库逻辑备份
表锁:一种是表锁,一种是元数据锁(meta data lock,MDL)。MDL 不需要显式使用,在访问一个表的时候会被自动加上,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL读锁;当要对表做结构变更操作的时候,加 MDL 写锁。风险点在于加了写DML,之后的读DML全部被阻塞
页级锁:是 MySQL 中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。因此,采取了折衷的页级锁,一次锁定相邻的一组记录。BDB 引擎支持页级锁。
行级锁:级锁是粒度最低的锁,发生锁冲突的概率也最低、并发度最高。但是加锁慢、开销大,容易发生死锁现象。MySQL中只有InnoDB支持行级锁,行级锁分为共享锁和排他锁。记录锁(锁的是索引,如果不是索引,加的排它锁就不是rl)、间隙锁(范围内的没有索引的空间)与 Next-Key Lock(前面的合体,锁住行和之间的空隙-左开右闭)。锁的是索引,索引分为主键索引和非主键索引两种,如果一条sql语句操作了主键索引,MySQL就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。
深入了解mysql–gap locks,Next-Key Locks
按照模式
乐观锁:乐观锁是相对悲观锁而言的,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则返回给用户错误的信息,让用户决定如何去做。
适用于读多写少

#通过加了一个版本号
update set status=支付成功,version=version+1 where id=#{id} and version=#{ version};

悲观锁具有强烈的独占和排他特性,每次去拿数据的时候都认为别人会修改,在整个数据处理过程中,将数据处于锁定状态
适用于并发量不大、写入操作比较频繁、数据一致性比较高的场景
在MySQL中使用悲观锁,必须关闭MySQL的自动提交,set autocommit=0,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交(这样多个更新不是一块锁了)。
共享锁和排它锁是悲观锁的不同的实现,它俩都属于悲观锁的范畴
悲观锁
按照属性
共享锁:又称之为读锁,简称S锁。如果事务T对数据A加上排它锁后,就只允许事务T对数据A的读取、修改,其他事务对数据A不能再加任何锁,也不能读取和修改数据A,直到事务T释放A上的排它锁。通过普通读和共享读都可以读出来数据

selectlock in share mode

排它锁:又称之为写锁,简称X锁,当事务对数据加上写锁后,其他事务既不能对该数据添加读写,也不能对该数据添加写锁,写锁与其他锁都是互斥的。只有当前数据写锁被释放后,其他事务才能对其添加写锁或者是读锁。
MySQL InnoDB引擎默认update,delete,insert都会自动给涉及到的数据加上排他锁,select语句默认不会加任何锁类型。提交事务或回滚事务就会释放锁

selectfor update

按状态分
意向共享锁、意向排它锁。意向锁是表锁,为了协调行锁和表锁的关系,支持多粒度(表锁与行锁)的锁并存。
当有事务A有行锁时,MySQL会自动为该表添加意向锁,事务B如果想申请整个表的写锁,那么不需要遍历每一行判断是否存在行锁,而直接判断是否存在意向锁,增强性能
注意:普通查询没有任何的锁机制
MySQL锁

MySQL主从复制?

主要涉及三个线程: binlog 线程、I/O 线程和 SQL 线程。

  • binlog 线程 : 负责将主服务器上的数据更改写入二进制日志中。
  • I/O 线程 : 负责从主服务器上读取二进制日志,并写入从服务器的中继日志中。
  • SQL 线程 : 负责读取中继日志并重放其中的 SQL 语句
    全同步复制主库写入binlog后强制同步日志到从库,所有的从库都执行完成后才返回给客户端,但是很显然这个方式的话性能会受到严重影响。
    半同步复制和全同步不同的是,半同步复制的逻辑是这样,从库写入日志成功后返回ACK确认给主库,主库收到至少一个从库的确认就认为写操作完成
MySQL读写分离方案?

主服务器处理写操作以及实时性要求比较高的读操作,而从服务器处理读操作。
读写分离能提高性能的原因在于:

  • 主从服务器负责各自的读和写,极大程度缓解了锁的争用;
  • 从服务器可以使用 MyISAM,提升查询性能以及节约系统开销;
  • 增加冗余,提高可用性。
    读写分离常用代理方式来实现,代理服务器接收应用层传来的读写请求,然后决定转发到哪个服务器
分库分表怎么做的?

确定userId 作为sharding key,通过基因法(id构成最后3位决定,取模8;4位,取模16),保证其它非sharding key 。hash一致性分库分表、
直接32库(逻辑库)32表1024张表,固然可以一步到位,但是对于小公司来说前期根本用不上,浪费机器且增加系统复杂度,所以还是循序渐进,按照一致性hash算法的思想,先确定总的节点数为32
基因法:分库基因,假如通过 uid 分库,分为 8 个库,采用 uid%8 的方式进行路由,此时是由 uid 的最后 3bit 来决定这行 User 数据具体落到哪个库上,那么这 3bit 可以看为分库基因。
一致性hash

相关文章:

MySQL 问题总结

什么是MVCC? 说说MySQL实现MVCC的原理? MVCC,全称Multi-Version Concurrency Control,即多版本并发控制。MVCC是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问。 对于「读已提交」和…...

62. 不同路径

62. 不同路径 一个机器人位于一个 m∗nm * nm∗n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路…...

在windows安装python3.11同时进行一个数据的练习

安装包百度网盘如下: 链接:https://pan.baidu.com/s/1l9H1GWP64LOxLaXXLie2uA?pwd6666 提取码:6666 1.我们选择自定义安装 2.当我们点了自定义安装后就直接next 3.修改路径,之后点击安装(install) 4.安装完成,进行…...

Java接口专题

基本介绍 接口给出一些没有实现的方法,封装到一起,到某个类使用时再根据具体情况把这些方法写出来。 注意:在jdk7之前,接口里所有的方法都是抽象方法。在jdk8之后接口中可以有静态方法,默认方法 interface 接口名{/…...

6招优化WordPress打开速度-让你的网站飞起来

为什么我们的WordPress网站比你的快? 我们的官网是使用WordPress框架搭建的,有没有发现我们的网站非常快,而你的WordPress网站比较慢呢?那是因为我们的网站经过了优化。 WordPress 很慢? 为什么很多人都会觉得 Word…...

春天到了,来一场 VoxEdit 创作大赛吧!

春天的气息扑面而来,这是让你尽情绽放创造力的最佳时机!我们将以「春天」为主题来一场 VoxEdit 大赛。在这里,你可以展示你的才华并赢得 $SAND 奖励! 无论你是专业的设计师,还是仅仅喜欢创造美丽的艺术,这场…...

异步Buck和同步Buck的特点

1 介绍 随着时代的发展,工业,车载,通信,消费类等产品都提出了小型化,智能化的需求。相应的,对于这些系统中的电源模块提出了小型化的要求。目前,市场上依然存在很多异步Buck电源管理芯片使用的场…...

基于轻量级YOLO开发构建中国象棋目标检测识别分析系统

关于棋类相关的项目在我之前的博文里面都有做过,如下:《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》《基于yolov5s实践国际象棋目…...

机器学习100天(三十五):035 贝叶斯公式

《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,根据我们之…...

大话数据结构-栈

1 概述 栈(Stack)是限定仅在表尾进行插入和删除操作的线性表。 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈,栈又称为后进…...

javaFx实现放大镜效果——圆形、矩形、三角形放大镜,拖动调整放大镜大小,设置放大倍数

系列文章专栏:javafx图形绘制、桌面录屏录音源码合集 目录 一、实现的效果 二、实现思路 三、程序实现...

什么是客户忠诚度?建立忠诚文化的 5 种方法

客户忠诚度影响企业的各个方面,例如收入、品牌形象、预算分配和产品路线图。拥有忠实的客户群对于建立成功的企业至关重要,因为您的客户是您的主要拥护者,有助于为您的企业营造积极的氛围。 什么是客户忠诚度? 客户忠诚度衡量客户…...

【ROS2知识】关于colcon编译和ament指定

一、说明 这里说说编译和包生成的操作要点,以python包为例。对于初学者来说,colcon和ament需要概念上搞清楚,与此同时,工作空间、包、节点在一个工程中需要熟练掌握。本文以humble版的ROS2,进行python编程的实现。 二、…...

数据结构: 最小栈

最小栈的特色是保持栈后进先出的特性,同时能够以O(1)复杂度获得当前栈的最小值。 栈是比较好实现的,直接搞个链表,从头部删除和添加即可。 最小栈的核心逻辑是: 因为栈是后进先出的,因此栈顶元素之下的数字永远在栈…...

STM32之PWM

PWMPWM,英文名Pulse Width Modulation,是脉冲宽度调制缩写,它是通过对一系列脉冲的宽度进行调制,等效出所需要的波形(包含形状以及幅值),对模拟信号电平进行数字编码,也就是说通过调…...

操作系统(1.1)--引论

目录 一、操作系统的目标和作用 1.操作系统的目标 2.操作系统的作用 2.1 OS作为用户与计算机硬件系统之间的接口 2.2 OS作为计算机系统资源的管理者 2.3 0S实现了对计算机资源的抽象 3. 推动操作系统发展的主要动力 二、操作系统的发展过程 1.无操作系统的计算机系统…...

Spring boot + mybatis-plus 遇到 数据库字段 创建不规范 大驼峰 下划线 导致前端传参数 后端收不到参数 解决方案

最近使用springboot 连接了一个 sqlserver 数据库 由于数据库年数久远 ,建表字段不规范 大驼峰 下划线的字段名都有 但是 java 中 Spring boot mybatis-plus 又严格按照小驼峰 格式 生成实体类 如果不是小驼峰格式 Data 注解 get set 方法 在前端请求参数 使用这个…...

JavaScript String 字符串对象

文章目录JavaScript String 字符串对象JavaScript 字符串字符串(String)在字符串中查找字符串内容匹配替换内容字符串大小写转换字符串转为数组特殊字符字符串属性和方法JavaScript String 字符串对象 String 对象用于处理已有的字符块。 JavaScript 字…...

Lazada如何做好店铺运营?产品定价是关键

1.东南亚各国状况一览(对比中国) 2.东南亚消费水平真的很低? 精准定价的意义:定价过高,失去核心竞争力;定价过低,亏本对市场失去信心;价格改动,流量下降 定价公式&#…...

空口协议Eapol、802.11 Action、802.11 BAR 和 802.11BA、802.11 Encrypted Data讲解

如下报文 可以看到,除了有之前开放认证的报文之外,还多了 EAPOL 次握手的报文。另外,还有其他几种类型的报文:802.11 Action、802.11 BAR 和 802.11BA、802.11 Encrypted Data ​ 密匙认证协议EAPOL: EAP是Extensible Authentication Protocol的缩写,EAPOL就是(EAP…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...