【Linux】理解文件系统
文章目录
- 理解文件系统
- 了解磁盘结构
- inode
理解文件系统
了解磁盘结构
磁盘是计算机中的一个 机械设备
这个磁盘的盘片就像光盘一样,数据就在盘片上放着, 但是光盘是只读的,磁盘是可读可写的
机械硬盘的寻址的工作方式: 盘片不断旋转,磁头不断摆动,定位到特定的位置
我们可以把磁盘看成是 线性结构,站在OS的视角:我们就认为磁盘是线性结构,要访问某一个扇区,就要定位数组下标LBA,要写到物理磁盘上,就要把LBA地址转化成磁盘的三维地址(磁头,磁道,扇区)
inode
文件在磁盘上是如何保存的?
1)首先我们知道,文件是在磁盘中的, 而现在我们把磁盘认为是一个线性结构
磁盘的空间很大,管理成本高!但是我们可以划分进行管理,比如我们的国家,把土地划分成每一块,并且给每一块土地配合合适的管理人员
因此我们对大磁盘:
1.分区: 大磁盘->划分为若干个小空间
2.格式化: 给每个分区 写入文件系统 (比如:向某某省写入领导班子)
下面我们以一个小区域作为例子,理论上,如果我们能把这个小区域管理好, 其余区域再复用这个管理方式即可.
例如:
- Block Group:ext2文件系统会根据分区的大小划分为数个Block Group.而每个Block Group都有着相同的结构组成 政府管理各区的例子
- 超级块(Super Block):存放文件系统本身的结构信息.记录的信息主要有:bolck 和 inode的总量,未使用的block和inode的数量,一个block和inode的大小,最近一次挂载的时间,最近一次写入数据的时间,最近一次检验磁盘的时间等其他文件系统的相关信息.Super Block的信息被破坏,可以说整个文件系统结构就被破坏了
- GDT,Group Descriptor Table:块组描述符,描述块组属性信息
- 块位图(Block Bitmap):Block Bitmap中记录着Data Block中哪个数据块已经被占用,哪个数据块没有被占用
- inode位图(inode Bitmap):每个bit表示一个inode是否空闲可用
- 节点表:存放文件属性 如 文件大小,所有者,最近修改时间等
- 数据区:存放文件内容
每个分区最初都可以有Boot Block
,是与启动相关的,供启动时查找分区, 我们再把剩下的空间继续拆解分组, Block group 0,Block group 1,…Block group n ,如果我们能管理好Block group 0,就能管理好1~n ,于是研究文件系统,就变成了研究一个Block group 0
文件 = 文件内容 + 文件属性
,文件内容放在Data blocks中,属性放在inode Table中
其中文件内容就算就算当中存储的数据,文件属性就算文件的一些基本信息,如:文件名,文件大小,文件的创建时间等信息
文件属性和文件内容分开存放,那他们是怎么关联的呢?
我们平常都是用文件名访问文件,但是在Linux下,在系统层面,文件名以及它的后缀是没有意义的,只是为了方便给用户使用. Linux真正标识一个文件,是通过文件的inode
编号 ,一个文件对应一个inode,一个inode也有自己的编号
inode里面有什么
要创建文件,就要在inode Table中申请一个未被使用的inode,填入文件的属性, 在Data blocks中也要创建一个block,用于存放文件的内容, inode用数组存储了相关联的blocks块编号,
Linux真正标识一个文件,是通过文件的inode编号,一个文件一个inode
//包含所有的文件的属性
struct inode
{//数据int inode_num;int blocks[32];
};
inode和inode编号:
保存文件信息的结构称为inode,因为系统中存在大量的文件,我们需要给每个文件的属性集起一个唯一的编号标识它,即 inode编号
我们怎么在inode Table申请一个未被使用的inode 和 如何在 Data blocks中申请未被使用的数据块?
使用遍历的话效率太低, 于是我们有位图inode Bitmap 和 block Bitmap来标识
例子:
0000 1111
从右往左,每一个比特位位置的含义是: inode编号 比特位的内容含义:特定的inode是否被使用
于是创建文件,申请一个未被使用的inode,就遍历inode Bitmap,找到第一个比特位为0的位置, 申请block数据块也同理, 当我们遍历到若干个为0的数据块位置,填入到blocks数组中构造映射关系
问:inode不保存文件名, 文件名是怎么和inode做对应的?
首先,我们要知道, Linux下一切皆是文件, 目录也是文件!所以在磁盘上,目录也有自己的 inode,目录也有自己的数据, 目录的数据块存放什么? -> 目录下的文件名和其对应的inode编号
- 那目录的inode中存放什么信息?
目录的大小,权限,链接数, 拥有者,所属组等
- 目录的数据块block放什么
首先我们要知道,我们所创建的所有文件,都放在特定的目录下,用户要用文件名,而系统用的是inode,因此 目录的数据块中存的是文件名和inode的映射关系
如何理解创建一个空文件
1.遍历inode Bitmap,找到比特位为0的位置,申请一个未被使用的inode
2.将inode表中找到对应的inode, 并将文件的属性信息填到inode结构当中
3.将该文件的文件名和inode指针添加到目录文件的数据块当中
如何理解对文件信息写入
1.通过文件的inode编号找到对应的inode结构
2.通过inode结构找到存储该文件内容的数据块,并将数据写入数据块
3.若不存在数据块或者申请的数据块已经写满了,就需要遍历block Bitmap找到一个空间的块号,并在数据区当中找到对应的空闲块,把数据写入到数据块当中,最后还需要建立数据块和inode结构的对应关系
描述下面的操作在系统层面都干了什么
1)创建文件: 遍历inode Bitmap位图找到比特位为0的位置, 然后把该位置比特位置为1,申请一个未被使用的inode,填入属性信息,并把这个文件名和inode的映射关系写到目录的Data blocks中
2)查看目录:根据该目录数据块的内容,通过inode找到与其映射的文件名
3)向文件当中写入:遍历位图block map找到若干个未被使用的数据块,把该文件的inode和这些blocks建立映射关系,然后向blocks写入内容
4)查看文件内容: cat hello.c -> 查看当前Test目录的data Blocks的数据块->找到hello.c这个文件名和其inode编号的映射关系 -> 在inode Table中找到inode -> 在inode结构体中找到对应的blocks[] -> 打印文件内容
问:删除文件做了些什么?
删除一个文件,并不删除属性和数据,只是把它是否有效删除掉了
只需要在位图中把对应inode编号的比特位由1置为0,把使用的数据块也在位图中由1置为0,并不需要改动文件属性和数据,所以删除数据一般是很快的
当我们删除文件后短时间内是可以恢复的, 为什么说是短时间内呢,因为该文件对应的inode号和数据块号已经被置为了无效,因此后续创建其他文件或是对其他文件进行写入操作申请inode号和数据块号时,可能会将该置为无效了的inode号和数据块号分配出去,此时删除文件的数据就会被覆盖,也就无法恢复文件了
为什么拷贝文件的时候很慢,而删除文件的时候很快
因为拷贝文件需要先创建文件,然后再对该文件进行写入操作,该过程需要先申请inode号并填入文件的属性信息,之后还需要再申请数据块号,最后才能进行文件内容的数据拷贝,而删除文件只需将对应文件的inode号和数据块号置为无效即可,无需真正的删除文件,因此拷贝文件是很慢的,而删除文件是很快的
如何理解目录
1.都说在Linux下一切皆文件,目录当然也可以被看作为文件
2.目录有自己的属性信息,目录的inode结构当中存储的就是目录的属性信息,比如目录的大小、目录的拥有者等
3.目录也有自己的内容,目录的数据块当中存储的就是该目录下的文件名以及对应文件的inode指针
注意: 每个文件的文件名并没有存储在自己的inode结构当中,而是存储在该文件所处目录文件的文件内容当中.因为计算机并不关注文件的文件名,计算机只关注文件的inode号,而文件名和文件的inode指针存储在其目录文件的文件内容当中后,目录通过文件名和文件的inode指针即可将文件名和文件内容及其属性连接起来
如何理解把一个文件移动到另一个目录下
实际上是把文件名和inode的映射关系到另一个目录下
在命令行输入ls -l
可以查看各个文件的属性信息
其中每一列代表的内容都不一样:
注意:无论是文件内容还是文件属性,他们都是存储在磁盘当中的
相关文章:

【Linux】理解文件系统
文章目录理解文件系统了解磁盘结构inode理解文件系统 了解磁盘结构 磁盘是计算机中的一个 机械设备 这个磁盘的盘片就像光盘一样,数据就在盘片上放着, 但是光盘是只读的,磁盘是可读可写的 机械硬盘的寻址的工作方式: 盘片不断旋转,磁头不断摆动,定位到特定的位置 我们可以把…...

Java如何String字符串带括号转成List
问题现象 今天在做一个需求:将存入数据库中的数据读到后解析成list遍历分析 数据格式: "[1677660600000, 1677660900000, 1677661200000]" "[5, 4, 4,3,2,0,0]" 我一开始想到的就是使用逗号分割即可 结果变成了这样的…...
react 使用 mqtt
也许很多人都好奇这个mqtt是什么东西,其实在互联网上可能不会使用到它,它是物联网上的东西,也是一种通信协议跟websocket。但它也能在浏览器跟服务器上跑,它的底层实现也是封装了websocket。 MQTT MQTT是一个客户端服务端架构的发…...

W25Q256被写保护如何修改
W25Q256被写保护如何修改1、 W25Q256数据读不到1.1 打印的寄存器的值1.2 可能原因1.3 解决办法1.4 用到的函数1、 W25Q256数据读不到 能够正确的读到ID,但是读到的数据不正确 1.1 打印的寄存器的值 0x2 BUSY :只读, 指令正在执行 WEL (1) &…...

论文投稿指南——中文核心期刊推荐(中国文学作品)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...
MySQL 问题总结
什么是MVCC? 说说MySQL实现MVCC的原理? MVCC,全称Multi-Version Concurrency Control,即多版本并发控制。MVCC是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问。 对于「读已提交」和…...

62. 不同路径
62. 不同路径 一个机器人位于一个 m∗nm * nm∗n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路…...

在windows安装python3.11同时进行一个数据的练习
安装包百度网盘如下: 链接:https://pan.baidu.com/s/1l9H1GWP64LOxLaXXLie2uA?pwd6666 提取码:6666 1.我们选择自定义安装 2.当我们点了自定义安装后就直接next 3.修改路径,之后点击安装(install) 4.安装完成,进行…...

Java接口专题
基本介绍 接口给出一些没有实现的方法,封装到一起,到某个类使用时再根据具体情况把这些方法写出来。 注意:在jdk7之前,接口里所有的方法都是抽象方法。在jdk8之后接口中可以有静态方法,默认方法 interface 接口名{/…...

6招优化WordPress打开速度-让你的网站飞起来
为什么我们的WordPress网站比你的快? 我们的官网是使用WordPress框架搭建的,有没有发现我们的网站非常快,而你的WordPress网站比较慢呢?那是因为我们的网站经过了优化。 WordPress 很慢? 为什么很多人都会觉得 Word…...

春天到了,来一场 VoxEdit 创作大赛吧!
春天的气息扑面而来,这是让你尽情绽放创造力的最佳时机!我们将以「春天」为主题来一场 VoxEdit 大赛。在这里,你可以展示你的才华并赢得 $SAND 奖励! 无论你是专业的设计师,还是仅仅喜欢创造美丽的艺术,这场…...

异步Buck和同步Buck的特点
1 介绍 随着时代的发展,工业,车载,通信,消费类等产品都提出了小型化,智能化的需求。相应的,对于这些系统中的电源模块提出了小型化的要求。目前,市场上依然存在很多异步Buck电源管理芯片使用的场…...

基于轻量级YOLO开发构建中国象棋目标检测识别分析系统
关于棋类相关的项目在我之前的博文里面都有做过,如下:《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》《基于yolov5s实践国际象棋目…...

机器学习100天(三十五):035 贝叶斯公式
《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,根据我们之…...

大话数据结构-栈
1 概述 栈(Stack)是限定仅在表尾进行插入和删除操作的线性表。 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈,栈又称为后进…...
javaFx实现放大镜效果——圆形、矩形、三角形放大镜,拖动调整放大镜大小,设置放大倍数
系列文章专栏:javafx图形绘制、桌面录屏录音源码合集 目录 一、实现的效果 二、实现思路 三、程序实现...

什么是客户忠诚度?建立忠诚文化的 5 种方法
客户忠诚度影响企业的各个方面,例如收入、品牌形象、预算分配和产品路线图。拥有忠实的客户群对于建立成功的企业至关重要,因为您的客户是您的主要拥护者,有助于为您的企业营造积极的氛围。 什么是客户忠诚度? 客户忠诚度衡量客户…...

【ROS2知识】关于colcon编译和ament指定
一、说明 这里说说编译和包生成的操作要点,以python包为例。对于初学者来说,colcon和ament需要概念上搞清楚,与此同时,工作空间、包、节点在一个工程中需要熟练掌握。本文以humble版的ROS2,进行python编程的实现。 二、…...
数据结构: 最小栈
最小栈的特色是保持栈后进先出的特性,同时能够以O(1)复杂度获得当前栈的最小值。 栈是比较好实现的,直接搞个链表,从头部删除和添加即可。 最小栈的核心逻辑是: 因为栈是后进先出的,因此栈顶元素之下的数字永远在栈…...

STM32之PWM
PWMPWM,英文名Pulse Width Modulation,是脉冲宽度调制缩写,它是通过对一系列脉冲的宽度进行调制,等效出所需要的波形(包含形状以及幅值),对模拟信号电平进行数字编码,也就是说通过调…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...