当前位置: 首页 > news >正文

sklearn多项式回归和线性回归

什么是线性回归?

回归分析是一种统计学方法,用于研究自变量和因变量之间的关系。它是一种建立关系模型的方法,可以帮助我们预测和解释变量之间的相互作用。
回归分析通常用于预测一个或多个因变量的值,这些因变量的值是由一个或多个自变量的值所决定的。回归分析的目标是建立一个数学模型来描述因变量和自变量之间的关系。
这个数学模型可以是线性或非线性的,可以包含一个或多个自变量。通过回归分析,我们可以使用已知的自变量和因变量值来计算模型参数,然后使用这些参数来预测因变量值。
回归分析被广泛应用于各种领域,包括经济学、社会学、医学、环境科学和工程学等。它可以用于研究许多不同的问题,如房价预测、销售预测、股票价格预测、人口增长预测等等。线性回归需要满足的条件:
(1)自变量和因变量在理论上有因果关系;(2)因变量为连续型变量;(3)各自变量与因变量之间存有线性关系;(4)残差要满足正态性、独立性、方差齐性。(5)多个自变量不存在多重共线性其中,线性(Linear)、正态性(Normal)、独立性(independence)、方差齐性(Equal Variance),俗称LINE,是线性回归分析的四大基本前提条件。

 sklearn的线性回归:

  • 准备工作
  • from sklearn.linear_model import LinearRegression
  • 创建模型: linear =LinearRegression()
  • 拟合模型: linear.fit(x,y)
  • 模型的预测值: linear.predict(输入数据)
  • 线性回归模型的权重linear.coef_和偏置linear.intercept_

class sklearn.linear_model.LinearRegression (fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)

 

参数

含义

fit_intercept:布尔值,可不填,默认为True是否计算此模型的截距。如果设置为False,则不会计算截距

normalize:布尔值,可不填,默认为False,当fit_intercept设置为False时,将忽略此参数。如果为True,则特征矩阵X在进入回归之前将会被减去均值(中心化)并除以L2范式(缩放)。如果你希望进行标准化,请在fit数据之前用preprocessing模块中的标准化专用类StandardScaler

copy_X:布尔值,可不填,默认为True,如果为真,将在X.copy()上进行操作,否则的话原本的特征矩阵X可能被线性回归影响并覆盖

n_jobs:整数或者None,可不填,默认为None,用于计算的作业数。只在多标签的回归和数据量足够大的时候才生效。除非None在joblib.parallel_backend上下文中,否则None统一表示为1。如果输入 -1,则表示使用全部的CPU来进行计算。

 线性回归代码:

线性回归直接预测血糖值:return: None"""# 获取数据lb = readcvs()# print(lb)# 分割数据集到训练集和测试集,按照75%:25%的比例进行数据分配训练数据和测试数据x_train, x_test, y_train, y_test = train_test_split(lb['data'], lb['target'], test_size=0.2)# 进行标准化处理(目标值要进行标准化处理)# 特征值和目标值都必须进行标准化处理, 实例化两个标准化API# 标准化也就是归一化处理# std_x = StandardScaler()# # 标准化训练数据# x_train = std_x.fit_transform(x_train)# # 标准化测试数据# x_test = std_x.transform(x_test)## # 目标值# std_y = StandardScaler()# # 标准化目标训练数据(因为数据是[y,y,1,1,1,1,...]变换成[[],[],[],[],[]...])进行变换# y_train = std_y.fit_transform(y_train.reshape(-1, 1))# # 标准化目标测试数据(同上)# y_test = std_y.transform(y_test.reshape(-1, 1))# estimator预测# 正规方程求解方式预测结果lr = LinearRegression()print("多项式参数:",l_data)# 对训练数据进行拟合lr.fit(x_train, y_train)# # 查看w的参数print('w参数',lr.coef_)# # 查看b的参数print('b参数',lr.intercept_)# 保存训练模型# 预测测试集的房子价格# y_lr_predict = std_y.inverse_transform(lr.predict(x_test))y_lr_predict = lr.predict(x_test)print("正规方程测试集里面每个血糖的预测: ", y_lr_predict)# print("正规方程的均方误差: ", mean_squared_error(std_y.inverse_transform(y_test), y_lr_predict))score_ = lr.score(x_test, y_test)print('模型得分', score_)# 保存血糖模型数据if score_ > 0.2:joblib.dump(lr, "./model/blood.pkl")return score_def train_():count=0sys.setrecursionlimit(100000)  # 设置递归深度list=[]#循环10000次for i in range(10000):score = train()list.append(score)count = count+1print("最高得分", max(list))if score>0.2:breakprint("最高得分",max(list))#加载模型准备预测
def predict():list=[[1, 80.0, 179, 55,421,0]]value=np.array(list)# 导入血糖模型数据lr = joblib.load("./model/blood.pkl")#直接预测结果y_lr_predict=lr.predict(value)print(y_lr_predict)#返回模型预测出来的血糖值return y_lr_predictif __name__ == "__main__":train_()

多项式回归:

多项式回归:
from sklearn.preprocessing import PolynomialFeatures
# 设置多项式阶数为2,其他值默认
# degree 多项式阶数
poly = PolynomialFeatures(degree=2)
res = poly.fit_transform(X)
PolynomialFeatures详细探讨
现在有(a,b)两个特征,使用degree=2的二次多项式则为(1,a, a^2, ab, b ,b^2)。
PolynomialFeatures主要有以下几个参数:degree:度数,决定多项式的次数interaction_only: 默认为False,字面意思就是只能交叉相乘,不能有a^2这种.include_bias: 默认为True, 这个bias指的是多项式会自动包含1,设为False就没这个1了.order:有"C" 和"F" 两个选项。官方写的是在密集情况(dense case)下的输出array的顺序,F可以加快操作但可能使得subsequent estimators变慢。

如何控制多项式回归的系数:a=[[2,3]] 或者a=[[2],[3]]

from sklearn.preprocessing import PolynomialFeatures
a=[[2,3]](相当于[[x1,x2]])
pf=PolynomialFeatures(degree=2)
print(pf.fit_transform(a)) #会产生多项式的系数
#[[1. 2. 3. 4. 6. 9.]] 相当于(1+2+3+2*2+2*3+3*3)
pf=PolynomialFeatures(degree=2,include_bias=False)
print(pf.fit_transform(a))
#[[2. 3. 4. 6. 9.]]
pf=PolynomialFeatures(degree=2,interaction_only=True)
print(pf.fit_transform(a))
#[[1. 2. 3.  6.]]如果是c=[[a],[b]]这种形式,生成的多项式就没有ab交叉项了,只有[[1,a,a^2], [1,b,b^2]] 。
c=[[2],[3]]
print(pf.fit_transform(c))
[[1. 2. 4.][1. 3. 9.]]

转换器Transformers 通常与分类器、回归器或其他估计器相结合,构成一个复合估计器。最常见的工具是pipeline。

利用Pipline进项多项式和线性回归合并,这样会产生非线性的回归

lr = Pipeline([('poly', PolynomialFeatures(degree=2)),('clf', LinearRegression())])
lr.fit(x_train, y_train)
多项式和线性回归相结合
lr = LinearRegression()
pf=PolynomialFeatures(degree=2)
lr.fit(pf.fit_transform(X), y)
print(lr.coef_)
print(lr.intercept_)
对应w和b(对应多项式的斜率和截距)
[0.1  1.413  -0.435]
-1.584092

回归的俩中线性和非线性:

# 线性回归
clf1 = LinearRegression()
clf1.fit(x, y)
y_l = clf1.predict(x)  # 线性回归预测值# 非线性回归
ployfeat = PolynomialFeatures(degree=3)  # 根据degree的值转换为相应的多项式(非线性回归)
x_p = ployfeat.fit_transform(x)
clf2 = LinearRegression()
clf2.fit(x_p, y)

相关文章:

sklearn多项式回归和线性回归

什么是线性回归? 回归分析是一种统计学方法,用于研究自变量和因变量之间的关系。它是一种建立关系模型的方法,可以帮助我们预测和解释变量之间的相互作用。 回归分析通常用于预测一个或多个因变量的值,这些因变量的值是由一个或多…...

Postman报:400 Bad Request

● 使用Postman发送Post请求报400,入参为JSON; 二、分析 1、Postman请求并没有请求到后台Api(由于语法错误,服务器无法理解请求); 2、入参出错范围:cookie、header、body、form-data、x-www-f…...

apache poi_5.2.5 实现表格内某一段单元格的复制

apache poi_5.2.5 实现表格内,某一段单元格的复制。 实现思路 1.定位开始位置 2.从开始位置之后,在行索引集合中添加行索引下标 3.截至到结束位置。 4.对行索引集合去重,并循环行索引集合 5.利用XWPFTableRow对像的getCtRow().copy()方法&a…...

Oracle重建索引详解

更新:2023-05-17 18:08 一、Oracle重建索引命令 Oracle重建索引可以通过ALTER INDEX命令来完成。下面是示例代码: ALTER INDEX index_name REBUILD [PARAMETERS];其中,index_name是需要重建的索引名称,PARAMETERS是可选的重建参…...

众和策略证券开户首选:股票增持是好还是坏?大股东增持规定?

股票增持是好仍是坏? 股东增持在一定程度上反映股东对个股比较看好,大量的买单,增加了市场上的多方力气,会推动股价上涨,是一种利好消息。 一般大股东会增持可能是上市公司运营成绩较好,具有较大的发展前…...

UE4移动端最小包优化实践

移动端对于包大小有着严苛的要求,然而UE哪怕是一个空工程打出来也有90+M,本文以一个复杂的工程为例,探索怎么把包大小降低到最小。 一、工程简介 工程包含代码、插件、资源、iOS原生库工程。 二、按官方文档进行基础优化 官方文档 1、勾选Use Pak File和Create comp…...

用户管理第2节课--idea 2023.2 后端--实现基本数据库操作(操作user表) -- 自动生成

一、插件 Settings... 1.1 File -- Settings 1.2 Settings -- Plugins 1.2.1 搜索框,也可以直接搜索 1.3 Plugins -- 【输入 & 搜索】mybatis 1.3.1 插件不同功能介绍 1.3.2 翻译如下 1.4 选中 Update,更新下 1.4.1 更新中 1.4.2 Restart IDE 1…...

java开发面试:常见业务场景之单点登录SSO(JWT)、权限认证、上传数据的安全性的控制、项目中遇到的问题、日志采集(ELK)、快速定位系统的瓶颈

单点登录(SSO) 单点登录,Single Sign On(简称SSO),只需要登录一次,就可以访问所有信任的应用系统。 如果是单个tomcat服务,session可以共享,如果是多个tomcat,那么服务s…...

Java网络编程原理与实践--从Socket到BIO再到NIO

文章目录 Java网络编程原理与实践--从Socket到BIO再到NIOSocket基本架构Socket 基本使用简单一次发送接收客户端服务端 字节流方式简单发送接收客户端服务端 双向通信客户端服务端 多次接收消息客户端服务端 Socket写法的问题BIO简单流程BIO写法客户端服务端 BIO的问题 NIO简述…...

ARM GIC(三) gicv2架构

ARM的cpu,特别是cortex-A系列的CPU,目前都是多core的cpu,因此对于多core的cpu的中断管理,就不能像单core那样简单去管理,由此arm定义了GICv2架构,来支持多核cpu的中断管理 一、gicv2架构 GICv2,支持最大8个core。其框图如下图所示: 在gicv2中,gic由两个大模块组成: …...

第4章Netty第二节入门案例+channel,future,promise介绍

需求 开发一个简单的服务器端和客户端 客户端向服务器端发送 hello, world服务器仅接收&#xff0c;不返回 <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.39.Final</version> </d…...

【论文笔记】3D Gaussian Splatting for Real-Time Radiance Field Rendering

原文链接&#xff1a;https://arxiv.org/abs/2308.04079 1. 引言 网孔和点是最常见的3D场景表达&#xff0c;因其是显式的且适合基于GPU/CUDA的快速栅格化。神经辐射场&#xff08;NeRF&#xff09;则建立连续的场景表达便于优化&#xff0c;但渲染时的随机采样耗时且引入噪声…...

【生物信息学】层次聚类过程

文章目录 一、理论二、实践过程1过程2 一、理论 层次聚类是一种基于树状结构的聚类方法&#xff0c;它试图通过在不同层次上逐步合并或分裂数据集来构建聚类结构。这个树状结构通常被称为“树状图”&#xff08;dendrogram&#xff09;&#xff0c;其中每个节点代表一个数据点或…...

变分自动编码器【03/3】:使用 Docker 和 Bash 脚本进行超参数调整

一、说明 在深入研究第 1 部分中的介绍和实现&#xff0c;并在第 2 部分中探索训练过程之后&#xff0c;我们现在将重点转向在第 3 部分中通过超参数调整来优化模型的性能。要访问本系列的完整代码&#xff0c;请访问我们的 GitHub 存储库在GitHub - asokraju/ImageAutoEncoder…...

KnowLM知识抽取大模型

文章目录 KnowLM项目介绍KnowLM项目的动机ChatGPT存在的问题 基于LLama的知识抽取的智析大模型数据集构建及训练过程预训练数据集构建预训练训练过程指令微调数据集构建 指令微调训练过程开源的数据集及模型局限性信息抽取Prompt 部署环境配置模型下载预训练模型使用LoRA模型使…...

MySQL数据库 索引

目录 索引概述 索引结构 二叉树 B-Tree BTree Hash 索引分类 索引语法 慢查询日志 索引概述 索引 (index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff0c;这些数据结构以某种…...

ES 错误码

2xx状态码&#xff08;如200&#xff09;表示请求成功处理&#xff0c;并且不需要重试。 400状态码表示客户端发送了无效的请求&#xff0c;例如请求的语法有误或缺少必需的参数。在这种情况下&#xff0c;重试相同的请求很可能会导致相同的错误。因此&#xff0c;应该先检查并…...

听GPT 讲Rust源代码--src/tools(18)

File: rust/src/tools/rust-analyzer/crates/ide-ssr/src/from_comment.rs 在Rust源代码中的from_comment.rs文件位于Rust分析器&#xff08;rust-analyzer&#xff09;工具的ide-ssr库中&#xff0c;它的作用是将注释转换为Rust代码。 具体来说&#xff0c;该文件实现了从注…...

如何实现设备远程控制?

在工业自动化领域&#xff0c;设备远程控制是一项非常重要的技术。它使得设备可以在远离现场的情况下进行远程操作和维护&#xff0c;大大提高了设备的可用性和效率。 设备远程控制的应用场景有哪些&#xff1f; 远程故障排除&#xff1a;当设备出现故障时&#xff0c;工程师…...

百度侯震宇详解:大模型将如何重构云计算?

12月20日&#xff0c;在2023百度云智大会智算大会上&#xff0c;百度集团副总裁侯震宇以“大模型重构云计算”为主题发表演讲。他强调&#xff0c;AI原生时代&#xff0c;面向大模型的基础设施体系需要全面重构&#xff0c;为构建繁荣的AI原生生态筑牢底座。 侯震宇表示&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...