当前位置: 首页 > news >正文

RocketMQ系统性学习-RocketMQ高级特性之消息大量堆积处理、部署架构和高可用机制

🌈🌈🌈🌈🌈🌈🌈🌈
【11来了】文章导读地址:点击查看文章导读!
🍁🍁🍁🍁🍁🍁🍁🍁

消息大量堆积如何处理?

消息出现大量堆积的原因是:生产者速度 >> 消费者速度

首先需要排除 代码层面 的问题,再去对 RocketMQ 的配置做处理!

那么对于消息堆积的处理,就分为两种情况:

  • 事发时处理:

    • 扩容消费者(在消费者数量 < MessageQueue 的情况下)

      这里 增加消费者的数量 是有依据的,比如一个 Topic 下有 8 个 MessageQueue,那么最多将消费者数量增加到 8 个,因为 Topic 下一个队列只可以被同一消费者组的一个消费者消费,如果消费者的数量比 Topic 下的队列数量多的话,会有部分消费者分不到队列,因此消费者数量最多和 Topic 下的队列数量相同

    • 设置消费者的并发线程数

      提高单个消费者的消费并发线程,RocketMQ 支持批量消费消息,可以通过修改 DefaultMQPushConsumer 类中的 consumeThreadMin、consumeThreadMax 来提高单个消费者的并发能力

    • 消费者批量拉取消息

    • 新建临时 Topic 并设置 MessageQueue 数量多一点,将当前堆积信息转发到新建 Topic 中,再使用大量消费者去消费新的 Topic

  • 提前设计预防:

    • 生产者:限流,评估 Topic 峰值流量合理设计 Topic 的队列数量,添加异常监控
    • 存储端:限流,将次要消息转移
    • 消费者:降级次要消息消费,将重要消息落库(数据库或ES),再异步处理,合理根据 Topic 队列的数量和应用性能来部署消费者机器数量
    • 上线前,采用灰度发布,先灰度小范围用户进行使用,没问题之后,再全量发布

部署架构和高可用机制

部署架构分为(这里的 Master ):

  • 单 Mastaer

    (图片来源于网络)

    在这里插入图片描述

    • 入门学习时常使用
  • 单 Msater 单 Slave:Master 宕机后集群不可写入消息,但是可以从 Slave 读取消息

    (图片来源于网络)

    在这里插入图片描述

    • 生产上不怎么使用,一般用作自己学习搭建主从使用
  • 多 Master ,无 Slave

    (图片来源于网络)

    在这里插入图片描述

    • 部署方式简单,生产常用
    • 单个 Master 宕机后,不影响整体集群的读写服务,但是宕机的在这台服务中未被消费的消息,在这台服务下次重启之前无法被消费
  • 多 Master,多 Slave,异步复制

    (图片来源于网络)

    在这里插入图片描述

    • Slave 作为备份节点,提供数据保障
    • 但是异步复制,可能丢失部分 Master 中的数据
  • 多 Msater,多 Slave,同步复制

    (图片来源于网络)

    在这里插入图片描述

    • 同步复制中,避免了丢失 Master 数据的风险
    • 但是同步复制限制了整个集群的吞吐量
  • Dledger 模式

    在这里插入图片描述

    • 提供了在主从模式中,Master 挂了之后,自动将 Slave 选举为 Master 的功能
    • 但是在 Dledger Group 中,至少需要 3 个 Broker 才可以完成选举

相关文章:

RocketMQ系统性学习-RocketMQ高级特性之消息大量堆积处理、部署架构和高可用机制

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 【11来了】文章导读地址&#xff1a;点击查看文章导读&#xff01; &#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f3…...

Angular 进阶之五: Signals到底用不用?

Angular 在V16的时候推出了Signals&#xff0c;在17正式作为主打功能之一强烈推荐&#xff0c;看过了各种博主的各种科普文章也没说明白&#xff0c;到底这东西值不值得用&#xff1f;毕竟项目大了&#xff0c;重构代码也不是闹着玩儿的。各种科普文章主要在说两点&#xff1a;…...

构建数字化金融生态系统:云原生的创新方法

内容来自演讲&#xff1a;曾祥龙 | DaoCloud | 解决方案架构师 摘要 本文探讨了金融企业在实施云原生体系时面临的挑战&#xff0c;包括复杂性、安全、数据持久化、服务网格使用和高可用容灾架构等。针对网络管理复杂性&#xff0c;文章提出了Spiderpool开源项目&#xff0c;…...

前端性能优化五:css和js位置

1. 精简HTML代码: ①. css链接文件尽量放在页面头部:a. css的加载不会阻塞DOM Tree的解析.b. 但会阻塞DOM Tree渲染,也会阻塞后面JS的执行.c. 将css放在任何body元素之前:(1). 可以确保在文档中解析了所有css的样式包括内联样式和外联的.(2). 减少了浏览器必须重排文档的次数.…...

苏州耕耘无忧物联网:降本增效,设备维护管理数字化转型的引领者

随着科技的快速发展和工业4.0的推动&#xff0c;设备维护管理已经从传统的被动式、经验式维护&#xff0c;转向了更加积极主动、数据驱动的维护模式。在这个过程中&#xff0c;苏州耕耘无忧物联科技有限公司以其深厚的技术积累和丰富的管理经验&#xff0c;引领着设备维护管理数…...

15个热门的开源数据可视化项目

数据可视化(即 BI仪表盘)是图形表示的数据。它涉及产生将表示的数据之间的关系传达给图像查看者的图像。这种通信是通过在可视化过程中使用图形标记和数据值之间的系统映射来实现的。该映射建立了如何在视觉上表示数据值,确定图形标记的属性(例如大小或颜色)如何以及在多大程…...

【第七在线】数据分析与人工智能在商品计划中的应用

随着技术的不断进步&#xff0c;数据分析和人工智能&#xff08;AI&#xff09;已经成为了现代商品计划的关键组成部分。在服装行业&#xff0c;这两项技术正在帮助企业更好地理解市场需求、优化库存管理、提高生产效率和提供更好的客户体验。本文将深入探讨数据分析和人工智能…...

【圣诞】极安云科赠书活动第①期:CTF实战:从入门到提升

【圣诞】极安云科赠书活动第①期&#xff1a;CTF实战:从入门到提升 9787111724834 9787121376955 9787302556275 ISBN编号&#xff1a;9787111724834 书名&#xff1a;CTF实战:从入门到提升 定&#xff1a;99.00元 开本&#xff1a;184&#xff4d;&#xff4d;260&#xff…...

分布式搜索elasticsearch概念

什么是elasticsearch&#xff1f; elasticsearch是一款非常强大的开源搜索引擎&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 目录 elasticsearch的场景 elasticsearch的发展 Lucene篇 Elasticsearch篇 elasticsearch的安装 elasticsearch的场景 elasticsear…...

Linux环境安装Hadoop

&#xff08;1&#xff09;下载Hadoop安装包并上传 下载Hadoop安装包到本地&#xff0c;并导入到Linux服务器的/opt/software路径下 &#xff08;2&#xff09;解压安装包 解压安装文件并放到/opt/module下面 [roothadoop100 ~]$ cd /opt/software [roothadoop100 software…...

swing快速入门(二十五)

注释很详细&#xff0c;直接上代码 新增内容 1.ImageIO.write读取并显示图片 2.ImageIO.writeImageIO.write读取并保存图片 package swing21_30;import javax.imageio.ImageIO; import java.awt.*; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent…...

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.卷尾猴算法4.实验参数设定5.算法结果6.参考文…...

前端传输formDate格式的数据,后端不能用@RequestBody接收

写了个接口&#xff0c;跟前端对接&#xff0c;前端说怎么一直415的报错 我寻思不对啊&#xff0c;我swagger都请求成功了&#xff0c;后来发现前端一直是以formdata格式提交的数据&#xff0c;这样我其实是可以不加RequestBody的&#xff1b; 知识点&#xff1a; RequestBody…...

【AivaAI】做音乐,无人能比它更专业

关于Aiva Aiva AIVA是音乐制作初创公司AIVA Technologies打造的一款人工智能产品。是人工智能领域头款获得国际认证的虚拟作曲家。 Aiva登录 可以选择Google登录&#xff0c;或者其他邮箱登录。 输入用户名&#xff0c;登录完成。 开始制作音乐 在主页选择“创建曲目…...

嵌入式开发网络配置——windows连热点,开发板和电脑网线直连

目录 电脑 WiFi 上网&#xff0c;开发板和电脑直连 使用场景 设置VMware虚拟机的网络配置 Ubuntu设置——版本18.04 ​编辑 windows设置 开发板设置 原因&#xff1a;虚拟机Linux移植可执行程序到开发板失败 最后发现虚拟机的Linuxping不通开发板 下面是我的解决方法 …...

基于Netty构建Websocket服务端

除了构建TCP和UDP服务器和客户端&#xff0c;Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议&#xff0c;可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例&#xff0c;演示如何使用Netty构建一个WebSocket服务器。 项目…...

基于Rocket MQ扩展的无限延迟消息队列

基于Rocket MQ扩展的无限延迟消息队列 背景: Rocket MQ支持的延迟队列时间是固定间隔的, 默认19个等级(包含0等级): 0s, 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h. 我们的需求是实现用户下单后48小时或72小时给用户发送逼单邮件. 使用默认的…...

Python办公自动化 – 日志分析和自动化FTP操作

Python办公自动化 – 日志分析和自动化FTP操作 以下是往期的文章目录&#xff0c;需要可以查看哦。 Python办公自动化 – Excel和Word的操作运用 Python办公自动化 – Python发送电子邮件和Outlook的集成 Python办公自动化 – 对PDF文档和PPT文档的处理 Python办公自动化 – 对…...

MyBatis 关联查询

目录 一、一对一查询&#xff08;sqlMapper配置文件&#xff09; 1、需求&#xff1a; 2、创建account和user实体类 3、创建AccountMapper 接口 4、创建并配置AccountMapper.xml 5、测试 二、一对多查询&#xff08;sqlMapper配置文件&#xff09; 1、需求&#xff1a;…...

NVIDIA NCCL 源码学习(十二)- double binary tree

上节我们以ring allreduce为例看到了集合通信的过程&#xff0c;但是随着训练任务中使用的gpu个数的扩展&#xff0c;ring allreduce的延迟会线性增长&#xff0c;为了解决这个问题&#xff0c;NCCL引入了tree算法&#xff0c;即double binary tree。 double binary tree 朴素…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...