python打开opencv图像与QImage图像及其转化
目录
1、Qimage图像
2、opencv图像
3、python打开QImage图像通过Qlabel控件显示
4、python打开QImage图像通过opencv显示
5、python打开opencv图像并显示
6、python打开opencv图像通过Qlabel控件显示
1、Qimage图像
QImage是Qt库中用于存储和处理图像的类。它可以存储多种格式的图像,包括RGB、RGBA、CMYK等。
QImage使用一个一维数组来存储像素数据。每个像素由红、绿、蓝三个分量组成,每个分量的取值范围为0到255。如果图像是彩色的,则每个像素还包含一个alpha通道,表示透明度,取值范围也为0到255。
在QImage中,像素数据的存储顺序是从左到右、从上到下。对于宽度为w和高度为h的图像,像素数据的起始地址为(w * h)个字节。每个像素的数据占用4个字节,即32位。因此,整个图像的数据大小为w * h * 4个字节。
以下是一个简单的示例代码,演示如何创建一个空的QImage对象并设置其大小:
from PyQt5.QtGui import QImage# 创建一个空的QImage对象,大小为100x100像素,格式为RGB32
image = QImage(100, 100, QImage.Format_RGB32)# 检查图像是否为空
if image.isNull():print("Image is null")
else:print("Image is not null")

图:原始图像
2、opencv图像
OpenCV使用NumPy数组来存储图像数据。在OpenCV中,每个图像都是由一个三维的NumPy数组表示的。该数组包含三个维度:高度、宽度和通道数。对于彩色图像,通道数为3,分别代表红色、绿色和蓝色通道。对于灰度图像,通道数为1。
每个像素值的范围取决于图像的数据类型。通常情况下,8位无符号整数(uint8)被用于RGB图像,其中每个通道的取值范围是0到255。如果要将图像保存到文件中,则需要将其转换为适当的数据类型和范围。
3、python打开QImage图像通过Qlabel控件显示
import numpy as np
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, Qlabel# 创建一个QGuiApplication对象
app = QApplication([])
# 加载图像文件
image = QImage(r"d:\Pictures\Saved Pictures\mv.jpg")# 将QImage转换为QPixmap对象
pixmap = QPixmap.fromImage(image)# 创建一个标签对象并将QPixmap传递给它
label = QLabel()
label.setPixmap(pixmap)# 显示标签
label.show()
# 运行应用程序的事件循环
app.exec_()

4、python打开QImage图像通过opencv显示
import numpy as np
from PyQt5.QtGui import QImage
import cv2
import matplotlib.pyplot as plt
def qimage_to_opencv(qimage):# 将QImage转换为numpy数组buffer = qimage.bits().asstring(qimage.byteCount())img_arr = np.frombuffer(buffer, dtype=np.uint8).reshape((qimage.height(), qimage.width(), 4))return img_arr# 加载图像文件
image = QImage(r"d:\Pictures\Saved Pictures\mv.jpg")
cvimg=qimage_to_opencv(image)
# 将图像从BGR色彩空间转换为RGB色彩空间
img_rgb = cv2.cvtColor(cvimg, cv2.COLOR_BGR2RGB)# 使用matplotlib显示图像
plt.imshow(img_rgb)
plt.title('Image')
plt.show()
5、python打开opencv图像并显示
import cv2
import matplotlib.pyplot as plt
# 读取图像文件
img = cv2.imread(r"d:\Pictures\Saved Pictures\mv.jpg")# 将图像从BGR色彩空间转换为RGB色彩空间
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 使用matplotlib显示图像
plt.imshow(img_rgb)
plt.title('Image')
plt.show()

6、python打开opencv图像通过Qlabel控件显示
import cv2
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QLabel
import sys
def CvMatToQImage(cvMat):if len(cvMat.shape) == 2:# 灰度图是单通道,所以需要用Format_Indexed8rows, columns = cvMat.shapebytesPerLine = columnsreturn QImage(cvMat.data, columns, rows, bytesPerLine, QImage.Format_Indexed8)else:rows, columns, channels = cvMat.shapebytesPerLine = channels * columnsreturn QImage(cvMat.data, columns, rows, bytesPerLine, QImage.Format_RGB888).rgbSwapped()
# 读取图像文件
img = cv2.imread(r"d:\Pictures\Saved Pictures\mv.jpg")
# 加载图像文件
qimg=CvMatToQImage(img)
# 创建一个QGuiApplication对象
app = QApplication(sys.argv)# 创建QLabel并设置其Pixmap
label = QLabel()
pixmap = QPixmap.fromImage(qimg)
label.setPixmap(pixmap)
# 显示标签
label.show()
# 运行应用程序的事件循环
app.exec_()
相关文章:
python打开opencv图像与QImage图像及其转化
目录 1、Qimage图像 2、opencv图像 3、python打开QImage图像通过Qlabel控件显示 4、python打开QImage图像通过opencv显示 5、python打开opencv图像并显示 6、python打开opencv图像通过Qlabel控件显示 1、Qimage图像 QImage是Qt库中用于存储和处理图像的类。它可以存储多种…...
linux 其他版本RCU
1、不可抢占RCU 如果我们的需求是“不管内核是否编译了可抢占RCU,都要使用不可抢占RCU”,那么应该使用不可抢占RCU的专用编程接口。 读者使用函数rcu_read_lock_sched()标记进入读端临界区,使用函数rcu_read_unlock_ sched()标记退出读端临界…...
【单调栈】LeetCode:2818操作使得分最大
作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 题目 给你一个长度为 n 的正整数数组 nums 和一个整数 k 。 一开始,你的分数为 1 。你可以进行以下操作至多 k 次,目标是使你的分数最大: 选择一个之前没有选过的 非…...
uniapp 添加分包页面,配置分包预下载
为什么要分包 ? 分包即将小程序代码分成多个部分打包,可以减少小程序的加载时间,提升用户体验 添加分包页面 比较便捷的方法是使用vscode插件 uni-create-view 新建分包文件夹 以在我的页面,添加分包的设置页面为例,新建文件夹 s…...
成功案例分享:物业管理小程序如何助力打造智慧社区
随着科技的进步和互联网的普及,数字化转型已经渗透到各个行业,包括物业管理。借助小程序这一轻量级应用,物业管理可以实现线上线下服务的无缝对接,提升服务质量,优化用户体验。本文将详细介绍如何通过乔拓云网设计小程…...
Electron执行本地cmd命令
javascript执行本地cmd命令,javascript代码怎么执行_js调用本机cmd-CSDN博客 使用 Node.js 打开本地应用_nodejs启动应用-CSDN博客 笔记:nodejs脚本唤醒本地应用程序或者调用命令-CSDN博客 electron调起本地应用_electron 调用本地程序-CSDN博客 命令行打开vscode 你可以使用…...
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
一、本文介绍 本文给大家带来的改进机制是MobileNetV3,其主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层&…...
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
系列文章目录 前言 此示例说明如何使用深度学习对移动设备摄像头采集的图像进行分类。 在您的移动设备上安装和设置 MATLAB Mobile™。然后,从 MATLAB Mobile 的“设置”登录 MathWorks Cloud。 在您的设备上启动 MATLAB Mobile。 一、在您的设备上安装 MATLAB M…...
LangChain入门指南:定义、功能和工作原理
LangChain入门指南:定义、功能和工作原理 引言LangChain是什么?LangChain的核心功能LangChain的工作原理LangChain实际应用案例如何开始使用LangChain 引言 在人工智能的浪潮中,语言模型已成为推动技术革新的重要力量。从简单的文本生成到复…...
关键字:import关键字
在 Java 中,import关键字用于导入类或接口,使你可以在代码中使用它们而无需完全限定其名称。以下是使用import关键字的示例代码: 在上述示例中,通过使用import关键字导入了java.util.ArrayList类,这样就可以在代码中直…...
【C#】.net core 6.0 通过依赖注入注册和使用上下文服务
给自己一个目标,然后坚持一段时间,总会有收获和感悟! 请求上下文是指在 Web 应用程序中处理请求时,包含有关当前请求的各种信息的对象。这些信息包括请求的头部、身体、查询字符串、路由数据、用户身份验证信息以及其他与请求相关…...
关于redis单线程和IO多路复用的理解
首先,Redis是一个高性能的分布式缓存中间件。其复杂性不言而喻,对于Redis整体而言肯定不是只有一个线程。 我们常说的Redis 是单线程,主要是指 Redis 在网络 IO和键值对读写是采用一个线程来完成的,这也是 Redis 对外提供键值存储…...
第四十一章 XML 映射参数摘要
文章目录 第四十一章 XML 映射参数摘要 第四十一章 XML 映射参数摘要 TopicParameters启用 XML 映射。XMLENABLED 类参数将属性映射到元素或属性。XMLPROJECTION property parameter ("NONE", "ATTRIBUTE", "XMLATTRIBUTE", "CONTENT"…...
redis之五种基本数据类型
一) 字符串(String) 1 使用场景 2 编码 3 编码转换 二) List(列表) 1 使用场景 2 编码 三) Set(无序集合) 1 使用场景 2 编码 3 编码转换 四) ZSet(有序集合) 1 使用场景 2 编码 3 编码转换 五) Hash 1 使用场景 2 编码 3 编码转换 五种基本数据类型 redis…...
RocketMQ系统性学习-RocketMQ高级特性之消息大量堆积处理、部署架构和高可用机制
🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁dz…...
Angular 进阶之五: Signals到底用不用?
Angular 在V16的时候推出了Signals,在17正式作为主打功能之一强烈推荐,看过了各种博主的各种科普文章也没说明白,到底这东西值不值得用?毕竟项目大了,重构代码也不是闹着玩儿的。各种科普文章主要在说两点:…...
构建数字化金融生态系统:云原生的创新方法
内容来自演讲:曾祥龙 | DaoCloud | 解决方案架构师 摘要 本文探讨了金融企业在实施云原生体系时面临的挑战,包括复杂性、安全、数据持久化、服务网格使用和高可用容灾架构等。针对网络管理复杂性,文章提出了Spiderpool开源项目,…...
前端性能优化五:css和js位置
1. 精简HTML代码: ①. css链接文件尽量放在页面头部:a. css的加载不会阻塞DOM Tree的解析.b. 但会阻塞DOM Tree渲染,也会阻塞后面JS的执行.c. 将css放在任何body元素之前:(1). 可以确保在文档中解析了所有css的样式包括内联样式和外联的.(2). 减少了浏览器必须重排文档的次数.…...
苏州耕耘无忧物联网:降本增效,设备维护管理数字化转型的引领者
随着科技的快速发展和工业4.0的推动,设备维护管理已经从传统的被动式、经验式维护,转向了更加积极主动、数据驱动的维护模式。在这个过程中,苏州耕耘无忧物联科技有限公司以其深厚的技术积累和丰富的管理经验,引领着设备维护管理数…...
15个热门的开源数据可视化项目
数据可视化(即 BI仪表盘)是图形表示的数据。它涉及产生将表示的数据之间的关系传达给图像查看者的图像。这种通信是通过在可视化过程中使用图形标记和数据值之间的系统映射来实现的。该映射建立了如何在视觉上表示数据值,确定图形标记的属性(例如大小或颜色)如何以及在多大程…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
