当前位置: 首页 > news >正文

R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。

alt

本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。


加载R包与数据

library(ggpubr) 
library(patchwork) 
library(ggsci)
library(tidyverse)
# 使用R语言自带的iris数据集,并随机分成两组
data <- iris
data$Group <- NA
data$Group[sample(1:nrow(data),size = (nrow(data)/2))] <- "A"
data$Group[is.na(data$Group)] <- "B"

alt 在实际数据可视化过程中,输入数据格式也和上面类似,至少有两列,其中一列是分类,另一列是数值。

绘制箱线图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)

这里将Species设置为x轴,Sepal.Width设置为y轴,箱子内部填充颜色与Species映射。 alt

这段代码的作用是创建一个箱形图,显示不同物种(Species)的萼片宽度(Sepal.Width)分布,且不同物种的箱形用不同颜色表示,并且这些颜色半透明。

这种类型的图表通常用于展示和比较不同类别或组的数据分布情况,特别是中位数、四分位数等统计信息。

绘制散点图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_jitter(aes(color = Species))
alt

利用ggplot2包创建散点图,并通过geom_jitter功能添加一些随机噪声来分散点,以便更清晰地展示数据。

绘制箱线图+散点图

p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())
p
alt

单因素多水平比较

对于两组以上的独立样品,如果数据同时满足正态性和方差齐性,可以采用方差分析(ANOVA)或者Kruskal检验,如果不满足可采用Kruskal检验。

p <- p + stat_compare_means(
    method = "kruskal.test",
    label = "p.format",
    label.x = 2,
    label.y = 4,
    show.legend = F
)
p
alt

可以看到上图中自动标注的显著性P值,通过修改label参数可以转换展示方式,默认显示检验方法和p值。

p.format只显示p值不显示检验方法,p.signif显示显著性水平符号,ns: p > 0.05、*: p <= 0.05、**: p <= 0.01、***: p <= 0.001、****: p <= 0.0001。

  • method:选择统计学检验的方法
alt

单因素两两比较

如果想看两两之间的差异显著性,例如“setosa”和“versicolor”,可以通过wilcox.test方法进行检验。

# 首先设置比较的列表
compare_list <- list(
    c("setosa","versicolor"),
    c("versicolor","virginica")
p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())+
    stat_compare_means(
    comparisons = compare_list,
    method = "wilcox.test",
    label = "p.signif")
)

代码中stat_compare_means函数提供统计学检验,调节参数可以转换方法和展示方式。 alt

双因素组内比较

如果引入分组信息作为另外一个因素,那么可以对每个水平内两组进行比较。

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)
p
alt

箱线 + 散点

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)+
    geom_jitter(position = position_jitterdodge(jitter.width = 0.5,
                                                jitter.height = 0.5,
                                                dodge.width = 0.2))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()
p
alt

position_jitterdodge函数可以调整散点图的抖动范围,scale_fill_manual用于调整填充颜色,theme_bw用于设置主题,这段代码仅作图。

统计学检验

p <- p + stat_compare_means(
    aes(group = Group),
    label = "p.format",
    show.legend = F,
    label.y = 8.5
)
p
alt

这张图x轴是不同分类,每个分类下有A和B两组,y轴表示具体的值,每个分类上有P值标注。

在实际的分析可视化过程中,还要考虑实验设计、数据分布状态等因素,合理选择检验方法,并根据目的和需求修改相应参数。

本文由 mdnice 多平台发布

相关文章:

R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

散点图可以直观反映数据的分布&#xff0c;箱线图可以展示均值等关键统计量&#xff0c;二者结合能够清晰呈现数据蕴含的信息。 本篇笔记主要内容&#xff1a;介绍R语言中绘制箱线图和散点图的方法&#xff0c;以及二者结合展示教程&#xff0c;添加差异比较显著性分析&#xf…...

51单片机的羽毛球计分器系统【含proteus仿真+程序+报告+原理图】

1、主要功能 该系统由AT89C51单片机LCD1602显示模块按键等模块构成。适用于羽毛球计分、乒乓球计分、篮球计分等相似项目。 可实现基本功能: 1、LCD1602液晶屏实时显示比赛信息 2、按键控制比赛的开始、暂停和结束&#xff0c;以及两位选手分数的加减。 本项目同时包含器件清…...

设计模式之-责任链模式,快速掌握责任链模式,通俗易懂的讲解责任链模式以及它的使用场景

系列文章目录 设计模式之-6大设计原则简单易懂的理解以及它们的适用场景和代码示列 设计模式之-单列设计模式&#xff0c;5种单例设计模式使用场景以及它们的优缺点 设计模式之-3种常见的工厂模式简单工厂模式、工厂方法模式和抽象工厂模式&#xff0c;每一种模式的概念、使用…...

Qt通用属性工具:随心定义,随时可见(一)

一、开胃菜&#xff0c;没图我说个DIAO 先不BB&#xff0c;给大家上个效果图展示下&#xff1a; 上图我们也没干啥&#xff0c;几行代码&#xff1a; #include "widget.h" #include <QApplication> #include <QObject> #include "QtPropertyEdit…...

Python中json模块的使用与pyecharts绘图的基本介绍

文章目录 json模块json与Python数据的相互转化 pyecharts模块pyecharts基本操作基础折线图配置选项全局配置选项 json模块的数据处理折线图示例示例代码 json模块 json实际上是一种数据存储格式&#xff0c;是一种轻量级的数据交互格式&#xff0c;可以把他理解成一个特定格式…...

nodejs+vue+微信小程序+python+PHP医院挂号系统-计算机毕业设计推荐

当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c; 本医院挂号系统也是紧跟科学技术的发展&#xff0c;运用当今一流的软件技术实现软件系统的开发&#xff0c;让家具销…...

数据大模型与低代码开发:赋能技术创新的黄金组合

在当今技术领域&#xff0c;数据大模型和低代码开发已经成为两个重要的趋势。数据大模型借助庞大的数据集和强大的计算能力&#xff0c;助力我们从海量数据中挖掘出有价值的洞见和预测能力。与此同时&#xff0c;低代码开发通过简化开发流程和降低编码需求&#xff0c;使得更多…...

Redis BitMap(位图)

这里是小咸鱼的技术窝&#xff08;CSDN板块&#xff09;&#xff0c;我又开卷了 之前经手的项目运行了10多年&#xff0c;基于重构&#xff0c;里面有要实现一些诸如签到的需求&#xff0c;以及日历图的展示&#xff0c;可以用将签到信息存到传统的关系型数据库&#xff08;MyS…...

使用eclipse创建一个java文件并运行

启动 Eclipse 并创建一个新的 Java 项目: 打开 Eclipse。 选择 “File” > “New” > “Java Project”&#xff08;文件 > 新建 > Java 项目&#xff09;。 在弹出的窗口中&#xff0c;为你的项目命名&#xff0c;比如 MyJavaProject。 点击 “Finish”&#xff…...

C#上位机与欧姆龙PLC的通信05---- HostLink协议

1、介绍 Hostlink协议是欧姆龙PLC与上位机链接的公开协议。上位机通过发送Hostlink命令&#xff0c;可以对PLC进行I/O读写、可以对PLC进行I/O读写、改变操作模式、强制置位/复位等操作。由于是公开协议&#xff0c;即便是非欧姆龙的上位设备&#xff08;软件&#xff09;&…...

Uniapp 开发 BLE

BLE 低功耗蓝牙&#xff08;Bluetooth Low Energy&#xff0c;或称Bluetooth LE、BLE&#xff0c;旧商标Bluetooth Smart&#xff09;&#xff0c;用于医疗保健、运动健身、安防、工业控制、家庭娱乐等领域。在如今的物联网时代下大放异彩&#xff0c;扮演者重要一环&#xff…...

c语言排序算法

C语言代码示例&#xff1a; 冒泡排序&#xff08;Bubble Sort&#xff09;&#xff1a; void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {int temp arr[j];arr[j] arr[j1];arr[j1] temp;…...

【机器学习】模式识别

1 概述 模式识别&#xff0c;简单来讲&#xff0c;就是分类问题。 模式识别应用&#xff1a;医学影像分析、人脸识别、车牌识别、遥感图像 2 模式分类器 分类器的分类&#xff1a;线性分类器、非线性分类器、最近邻分类器 2.1 分类器的训练&#xff08;学习&#xff09;过…...

【Prometheus|报错】Out of bounds

【背景】进入Prometheus地址的9090端口&#xff0c;pushgateway&#xff08;0/1&#xff09;error : out of bounds 【排查分析】 1、out of bounds报错&#xff0c;是由于Prometheus向tsdb存数据出错&#xff0c;与最新存数据的时间序列有问题&#xff0c;有可能当前时间与最…...

【音视频】Mesh、Mcu、SFU三种框架的总结

目录 三种网络场景介绍 【Mesh】 【MCU】(MultiPoint Control Unit) 【SFU】(Selective Forwarding Unit) 三种网络架构的优缺点 Mesh架构 MCU架构(MultiPoint Control Unit) SFU架构(Selective Forwarding Unit) 总结 参考文章 三种网络场景介绍 【Mesh】 Mesh架构…...

高级算法设计与分析(四) -- 贪心算法

系列文章目录 高级算法设计与分析&#xff08;一&#xff09; -- 算法引论 高级算法设计与分析&#xff08;二&#xff09; -- 递归与分治策略 高级算法设计与分析&#xff08;三&#xff09; -- 动态规划 高级算法设计与分析&#xff08;四&#xff09; -- 贪心算法 高级…...

MATLAB - 机器人逆运动学设计器(Inverse Kinematics Designer APP)

系列文章目录 前言 一、简介 通过逆运动学设计器&#xff0c;您可以为 URDF 机器人模型设计逆运动学求解器。您可以调整逆运动学求解器并添加约束条件&#xff0c;以实现所需的行为。使用该程序&#xff0c;您可以 从 URDF 文件或 MATLAB 工作区导入 URDF 机器人模型。调整逆…...

使用OpenCV DNN模块进行人脸检测

内容的一部分来源于贾志刚的《opencv4应用开发、入门、进阶与工程化实践》。这本书我大概看了一下&#xff0c;也就后面几章比较感兴趣&#xff0c;但是内容很少&#xff0c;并没有想像的那种充实。不过学习还是要学习的。 在实际工程项目中&#xff0c;并不是说我们将神经网络…...

C#中使用OpenCV的常用函数

以下是一些C#中使用OpenCV的常用函数例子&#xff1a; 1. 加载图像&#xff1a; using OpenCvSharp;Mat image Cv2.ImRead("path_to_your_image.jpg", ImreadModes.Color); 2. 显示图像&#xff1a; Cv2.NamedWindow("Image Window", WindowFlags.Nor…...

使用Swift Package Manager (SPM)实现xcframework分发

Swift Package Manager (SPM) 是苹果官方提供的用于管理 Swift 项目的依赖关系和构建过程的工具。它是一个集成在 Swift 编程语言中的包管理器&#xff0c;用于解决在开发过程中管理和构建包依赖项的需求。 1、上传xcframework.zip到服务端 压缩xcframeworks成一个zip包&…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...