LangChain 31 模块复用Prompt templates 提示词模板
LangChain系列文章
- LangChain 实现给动物取名字,
- LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
- LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
- LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
- LangChain 5易速鲜花内部问答系统
- LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
- LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
- LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
- LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
- LangChain 10思维链Chain of Thought一步一步的思考 think step by step
- LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
- LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
- LangChain 13输出解析Output Parsers 自动修复解析器
- LangChain 14 SequencialChain链接不同的组件
- LangChain 15根据问题自动路由Router Chain确定用户的意图
- LangChain 16 通过Memory记住历史对话的内容
- LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
- LangChain 18 LangSmith监控评估Agent并创建对应的数据库
- LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
- LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
- LangChain 21 Agents自问自答与搜索 Self-ask with search
- LangChain 22 LangServe用于一键部署LangChain应用程序
- LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
- LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
- LangChain 25: SQL Agent通过自然语言查询数据库sqlite
- LangChain 26: 回调函数callbacks打印prompt verbose调用
- LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
- LangChain 28 BabyAGI编写旧金山的天气预报
- LangChain 29 调试Debugging 详细信息verbose
- LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息

Prompt templates 提示词模板
大多数LLM应用程序不会直接将用户输入传递给LLM。通常,它们会将用户输入添加到一个更大的文本片段中,称为提示模板,该模板提供有关特定任务的附加上下文。
在前面的示例中,我们传递给模型的文本包含生成公司名称的说明。对于我们的应用程序,如果用户只需提供公司/产品的描述而不必担心给模型提供说明,那将是很好的。
PromptTemplates正是为此而设计的!它们捆绑了从用户输入到完全格式化提示的所有逻辑。这可以非常简单地开始-例如,用于生成上述字符串的提示只是:
from langchain.prompts import PromptTemplateprompt = PromptTemplate.from_template("制造{product}的公司取什么好名字?")
prompt.format(product="彩色袜子")
制造彩色袜子的公司取什么好名字?
然而,使用这些而不是原始字符串格式化的优势有几个。你可以“部分”地提取变量 - 例如,你可以一次只格式化一些变量。你可以将它们组合在一起,轻松地将不同的模板组合成单个提示。有关这些功能的详细说明,请参阅有关提示的部分。
PromptTemplates 也可以用于生成消息列表。在这种情况下,提示不仅包含有关内容的信息,还包含每条消息(其角色,其在列表中的位置等)的信息。在这里,最常见的情况是 ChatPromptTemplate 是 ChatMessageTemplates 的列表。每个 ChatMessageTemplate 包含有关如何格式化该 ChatMessage 的说明 - 其角色,以及其内容。让我们在下面看一下:
# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI # 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate # 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain # 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv # 导入Langchain库中的ChatOpenAI类,用于创建和管理OpenAI聊天模型的实例。
from langchain.chat_models import ChatOpenAI# 调用dotenv库的load_dotenv函数来加载.env文件中的环境变量。
# 这通常用于管理敏感数据,如API密钥。
load_dotenv() # 创建一个ChatOpenAI实例,配置它使用gpt-3.5-turbo模型,
# 设定温度参数为0.7(控制创造性的随机性)和最大令牌数为60(限制响应长度)。
chat = ChatOpenAI(model="gpt-3.5-turbo",temperature=0.7,max_tokens=120
)
# 导入Langchain库中的模板类,用于创建聊天式的提示。
from langchain.prompts import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate
)template = "你是一个很有帮助的助手,可以进行翻译语言从 {input_language} 到 {output_language}."
human_template = "{text}"chat_prompt = ChatPromptTemplate.from_messages([("system", template),("human", human_template),
])prompt = chat_prompt.format_messages(input_language="English", output_language="Chinese", text="I love programming.")
print('prompt >>> ', prompt)# 使用chat函数(需要事先定义)发送生成的提示,获取结果。
result = chat(prompt)# 打印聊天结果。
print('result >>> ', result)
[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_llm_prompt_template.py ──(Sat,Dec23)─┘
prompt >>> [SystemMessage(content='你是一个很有帮助的助手,可以进行翻译语言从 English 到 Chinese.'), HumanMessage(content='I love programming.')]
result >>> content='我热爱编程。'
ChatPromptTemplates也可以用其他方式构建 - 详细信息请参阅提示部分。
代码
https://github.com/zgpeace/pets-name-langchain/tree/develop
参考
https://python.langchain.com/docs/get_started/quickstart
相关文章:
LangChain 31 模块复用Prompt templates 提示词模板
LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…...
深入理解 Git 分支管理:提升团队协作与开发效率
目录 前言1 什么是分支2 分支的好处2.1 并行开发的支持2.2 独立性与隔离性2.3 灵活的版本控制2.4 提高安全性和代码质量2.5 项目历史的清晰记录 3 Git 分支操作命令3.1 git branch -v3.2 git branch 分支名称3.3 git checkout 分支名称3.4 git merge 分支名称3.5 git rebase 分…...
WPF StackPanel
StackPanel是一个控件容器,它按照一个方向(水平或垂直)堆叠子元素,使得它们沿一个轴线对齐。你可以在StackPanel中放置其他控件,如按钮、标签、文本框、图片等等。这些控件的排列方式由StackPanel按照指定的方向自动确…...
由正规表达式构造DFA,以及DFA的相关化简
目录 1.由正规式到DFA 首先讲如何从正规式到NFA 如何从NFA到DFA 2.DFA的化简 3.DFA和NFA的区别 1.由正规式到DFA 正规式--->NFA---->DFA 首先讲如何从正规式到NFA 转换规则: 例题1:这里圆圈里面的命名是随意的,只要能区别开就可以了 如何…...
模式识别与机器学习(九):Adaboost
1.原理 AdaBoost是Adaptive Boosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在…...
【JAVA】分布式链路追踪技术概论
目录 1.概述 2.基于日志的实现 2.1.实现思想 2.2.sleuth 2.2.可视化 3.基于agent的实现 4.联系作者 1.概述 当采用分布式架构后,一次请求会在多个服务之间流转,组成单次调用链的服务往往都分散在不同的服务器上。这就会带来一个问题:…...
ZooKeeper 使用介绍和原理详解
目录 1. 介绍 重要性 应用场景 2. ZooKeeper 架构 服务角色 数据模型 工作原理 3. 安装和配置 下载 ZooKeeper 安装和配置 启动 ZooKeeper 验证和管理 停止和关闭 4. ZooKeeper 数据模型 数据结构和层次命名空间: 节点类型和 Watcher 机制ÿ…...
模式识别与机器学习(八):决策树
1.原理 决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模…...
Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)
A - Distinct Buttons 题意: 思路:模拟从(0,0)到每个位置需要哪些操作,如果总共需要4种操作就输出NO。 // Problem: A. Distinct Buttons // Contest: Codeforces - Pinely Round 3 (Div. 1 Div. 2) // URL: https…...
在Linux下探索MinIO存储服务如何远程上传文件
🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 创建Buckets和Access Keys二. Linux 安装Cpolar三. 创建连接MinIO服务公网地…...
持续集成交付CICD:Linux 部署 Jira 9.12.1
目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave (从节点) jira9.12.1…...
Linux命令-查看内存、GC情况及jmap 用法
查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m :根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…...
nginx安装letsencrypt证书
1.安装推荐安装letsencrypt证书的客户端工具 官方推荐通过cerbot客户端安装letsencrypt 官方推荐使用snap客户端安装cerbot客户端 apt install snapd snap install --classic certbot 建立certbot软链接:ln -s /snap/bin/certbot /usr/bin/certbot 2.开始安装letse…...
docker笔记1-安装与基础命令
docker的用途: 可以把应用程序代码及运行依赖环境打包成镜像,作为交付介质,在各种环境部署。可以将镜像(image)启动成容器(container),并提供多容器的生命周期进行管理(…...
VSCode软件与SCL编程
原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC,是Visual studio code的缩写,是由微软开发的跨平台的轻量级编辑器,支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等,…...
Opencv中的滤波器
一副图像通过滤波器得到另一张图像,其中滤波器又称为卷积核,滤波的过程称之为卷积。 这就是一个卷积的过程,通过一个卷积核得到另一张图片,明显发现新的到的图片边缘部分更加清晰了(锐化)。 上图就是一个卷…...
<JavaEE> 基于 TCP 的 Socket 通信模型
目录 一、认识相关API 1)ServerSocket 2)Socket 二、TCP字节流套接字通信模型概述 三、回显客户端-服务器 1)服务器代码 2)客户端代码 一、认识相关API 1)ServerSocket ServerSocket 常用构造方法ServerSocke…...
[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)
题解 题目本身不难想 首先注意到所有查询的序列长度都是小于logn级别的 我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每…...
机器学习算法(11)——集成技术(Boosting——梯度提升)
一、说明 在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前…...
使用GBASE南大通用负载均衡连接池
若要使用负载均衡连接池功能,需要在连接串中配置相关的关键字。有关更详细的关键字信息在 GBASE南大通用 连接参数表‛中介绍。假设存在如下场景: 现有集群中存在 4 个节点: 192.168.9.173, 192.168.9.174, 192.168.9.175, 192.168.9.17…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
