当前位置: 首页 > news >正文

Spark Shell的简单使用

简介

        Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言。即使你对Scala不熟悉,仍然可以使用这个工具。Spark shell使得用户可以和Spark集群交互,提交查询,这便于调试,也便于初学者使用Spark。前一章介绍了运行Spark实例之前的准备工作,现在你可以开启一个Spark shell,然后用下面的命令连接你的集群:

spark-shell  spark://vm02:7077

格式:spark-shell  spark://host:port, 可以进入spark集群的任意一个节点
默认情况是进入到一个scala语言环境的一个交互窗口。

[hadoop@vm03 bin]$ spark-shell  spark://vm02:7077
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/12/21 20:06:11 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://vm03:4040
Spark context available as 'sc' (master = local[*], app id = local-1703160374523).
Spark session available as 'spark'.
Welcome to____              __/ __/__  ___ _____/ /___\ \/ _ \/ _ `/ __/  '_//___/ .__/\_,_/_/ /_/\_\   version 3.5.0/_/Using Scala version 2.12.18 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144)
Type in expressions to have them evaluated.
Type :help for more information.scala>

以上进入spark交互窗口中,输出一些日志信息,包含指定APP ID信息。

        master = local[*], app id = local-1703160374523

local[*] 是一种运行模式,用于指定 Spark 应用程序在本地模式下运行,而 * 表示 Spark 应该使用所有可用的 CPU 核心。如果需要使用多线程运行模式需要指定运行的线程数量local[N].

加载一个简单的text文件

        在服务器上随便创建一个txt文件用于做演示

        随便造数据如下:

[hadoop@vm02 ~]$ vim text.txtName, Age, City, Occupation, Salary
John, 25, New York, Engineer, 80000
Alice, 30, San Francisco, Data Scientist, 90000
Bob, 28, Los Angeles, Software Developer, 85000
Eva, 22, Chicago, Student, 0
Michael, 35, Boston, Manager, 100000
Olivia, 29, Seattle, Designer, 95000
David, 31, Austin, Analyst, 88000
Sophia, 26, Denver, Teacher, 75000
Daniel, 33, Miami, Doctor, 120000
Emma, 27, Atlanta, Nurse, 70000
William, 32, Houston, Researcher, 95000
Ava, 24, Phoenix, Artist, 78000
James, 29, San Diego, Programmer, 92000
Grace, 28, Portland, Writer, 86000
Jackson, 30, Nashville, Musician, 110000
Lily, 26, Minneapolis, Chef, 89000
Ethan, 35, Detroit, Entrepreneur, 130000
Chloe, 23, Philadelphia, Student, 0
Logan, 31, Pittsburgh, Engineer, 98000
Harper, 27, Charlotte, Manager, 105000
Aiden, 28, Las Vegas, Developer, 90000
Mia, 25, Dallas, Scientist, 95000
Lucas, 30, San Antonio, Designer, 85000
Evelyn, 29, Raleigh, Teacher, 78000
Noah, 34, Orlando, Doctor, 115000
Amelia, 26, Sacramento, Analyst, 92000
Sophie, 32, Tampa, Nurse, 75000
Owen, 28, St. Louis, Researcher, 98000
Isabella, 31, Kansas City, Writer, 86000

使用spark-shell交互页面,进行读取该文件内容。

scala> val infile = sc.textFile("file:/home/hadoop/text.txt")
infile: org.apache.spark.rdd.RDD[String] = file:/home/hadoop/text.txt MapPartitionsRDD[1] at textFile at <console>:23

val infile = sc.textFile("/home/hadoop/text.txt")

        这段代码的目的是读取指定路径下的文本文件,创建一个Spark RDD(infile),该RDD包含文件中的每一行作为一个元素。这是在Spark中处理文本数据的一种常见方式。将text.txt文件中的每行作为一个RDD(Resilient Distributed Datasets)中的单独元素加载到Spark中,并返回一个名为infile的RDD。

       多副本范例

        注意当你连接到Spark的master之后,若集群中没有分布式文件系统,Spark会在集群中每一台机器上加载数据,所以要确保集群中的每个节点上都有完整数据。通常可以选择把数据放到HDFS、S3或者类似的分布式文件系统去避免这个问题。在本地模式下,可以将文件从本地直接加载,例如
        sc.textFile([filepah]),想让文件在所有机器上都有备份,请使用SparkContext类中的addFile函数,代码如下:        

import org.apache.spark.SparkFiles;
val file =sc.addFile("file:/home/hadoop/text.txt")
val inFile=sc.textFile(SparkFiles.get("text.txt"))

         addFile可以把文件分发到各个worker当中,然后worker会把文件存放在临时目录下。之后可以通过SparkFiles.get()获取文件

import org.apache.spark.SparkFiles// 获取文件在工作节点上的本地路径
val localFilePath = SparkFiles.get("text.txt")// 打印路径
println(s"File is distributed to: $localFilePath")

        在其他节点,可以通过  SparkFiles的get()函数获取其存储路径

         文件内容读取范例

        在读取文件的时候,需要所有节点均存在该文件,不然后报错文件不存在,本spark基于hadoop for hdfs的分布式文件系统进行演练,首先需要将文件上传到hdfs文件系统中去


[hadoop@vm02 ~]$ hdfs dfs -mkdir /hadoop 
[hadoop@vm02 ~]$ hdfs dfs -ls /
Found 3 items
drwxr-xr-x   - hadoop supergroup          0 2023-12-21 22:31 /hadoop
drwxr-xr-x   - hadoop supergroup          0 2023-12-18 10:06 /hbase
drwxr-xr-x   - hadoop supergroup          0 2023-11-28 09:33 /home
[hadoop@vm02 ~]$ hdfs dfs -put /home/hadoop/text.txt  /hadoop/
[hadoop@vm02 ~]$ hdfs dfs -ls /hadoop 
Found 1 items
-rw-r--r--   3 hadoop supergroup       1119 2023-12-21 22:31 /hadoop/text.txt

将文件上传到hdfs中去,使用first进行查看文件内容表头信息

import org.apache.spark.SparkFiles; 
val infile = sc.textFile("hdfs://vm02:8020/hadoop/text.txt") 
infile.first() 

这里的8020是hdfs的rpc端口。 

spark-shell的逻辑回归 

        在 Spark 中,逻辑回归是一种用于二分类问题的机器学习算法。尽管它的名字中包含"回归",但实际上它是一种分类算法,用于预测一个二元目标变量的概率。


scala> import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.classification.LogisticRegressionscala> import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.feature.VectorAssemblerscala> import org.apache.spark.sql.{SparkSession, DataFrame}
import org.apache.spark.sql.{SparkSession, DataFrame}scala> scala> scala> val spark = SparkSession.builder.appName("LogisticRegressionExample").getOrCreate()
23/12/22 00:15:24 WARN SparkSession: Using an existing Spark session; only runtime SQL configurations will take effect.
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@13f05e8escala> val data = Seq(|   (1.0, 0.1, 0.5),|   (0.0, 0.2, 0.6),|   (1.0, 0.3, 0.7),|   (0.0, 0.4, 0.8)| )
data: Seq[(Double, Double, Double)] = List((1.0,0.1,0.5), (0.0,0.2,0.6), (1.0,0.3,0.7), (0.0,0.4,0.8))scala> scala> val columns = Seq("label", "feature1", "feature2")
columns: Seq[String] = List(label, feature1, feature2)scala> scala> val df: DataFrame = data.toDF(columns: _*)
df: org.apache.spark.sql.DataFrame = [label: double, feature1: double ... 1 more field]scala> df.show()
+-----+--------+--------+
|label|feature1|feature2|
+-----+--------+--------+
|  1.0|     0.1|     0.5|
|  0.0|     0.2|     0.6|
|  1.0|     0.3|     0.7|
|  0.0|     0.4|     0.8|
+-----+--------+--------+scala> val assembler = new VectorAssembler()
assembler: org.apache.spark.ml.feature.VectorAssembler = VectorAssembler: uid=vecAssembler_dc7bc810fe30, handleInvalid=errorscala>   .setInputCols(Array("feature1", "feature2"))
res1: assembler.type = VectorAssembler: uid=vecAssembler_dc7bc810fe30, handleInvalid=error, numInputCols=2scala>   .setOutputCol("features")
res2: res1.type = VectorAssembler: uid=vecAssembler_dc7bc810fe30, handleInvalid=error, numInputCols=2scala> scala> val assembledData = assembler.transform(df)
assembledData: org.apache.spark.sql.DataFrame = [label: double, feature1: double ... 2 more fields]scala> assembledData.show()
+-----+--------+--------+---------+
|label|feature1|feature2| features|
+-----+--------+--------+---------+
|  1.0|     0.1|     0.5|[0.1,0.5]|
|  0.0|     0.2|     0.6|[0.2,0.6]|
|  1.0|     0.3|     0.7|[0.3,0.7]|
|  0.0|     0.4|     0.8|[0.4,0.8]|
+-----+--------+--------+---------+scala> val lr = new LogisticRegression()
lr: org.apache.spark.ml.classification.LogisticRegression = logreg_29b7d06469bascala>   .setLabelCol("label")
res4: org.apache.spark.ml.classification.LogisticRegression = logreg_29b7d06469bascala>   .setFeaturesCol("features")
res5: org.apache.spark.ml.classification.LogisticRegression = logreg_29b7d06469bascala>   .setMaxIter(10)
res6: res5.type = logreg_29b7d06469bascala>   .setRegParam(0.01)
res7: res6.type = logreg_29b7d06469bascala> val lrModel = lr.fit(assembledData)
23/12/22 00:15:43 WARN InstanceBuilder: Failed to load implementation from:dev.ludovic.netlib.blas.JNIBLAS
lrModel: org.apache.spark.ml.classification.LogisticRegressionModel = LogisticRegressionModel: uid=logreg_29b7d06469ba, numClasses=2, numFeatures=2scala> val summary = lrModel.summary
summary: org.apache.spark.ml.classification.LogisticRegressionTrainingSummary = org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummaryImpl@4369db27scala> println(s"Coefficients: ${lrModel.coefficients}")
Coefficients: [-4.371555225626981,-4.37155522562698]scala> println(s"Intercept: ${lrModel.intercept}")
Intercept: 3.9343997030642823scala> println(s"Objective History: ${summary.objectiveHistory.mkString(", ")}")
Objective History: 0.6931471805599453, 0.5954136109155707, 0.5904687934140505, 0.5901819039583514, 0.5901795791081599, 0.5901795782746598

        在进行 拟合模型的时候,会占用较高的内存,如果内存不足,会导致内存溢出而退出spark-shell会话。通过以下命令,增加算子内存

spark-shell --conf spark.executor.memory=4g

但是不能超过可用内存

free -h 

代码含义解释

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.{SparkSession, DataFrame}

此部分导入了必要的Spark MLlib类和Spark SQL类。

val spark = SparkSession.builder.appName("LogisticRegressionExample").getOrCreate()

这创建了一个Spark会话,应用程序的名称为"LogisticRegressionExample"。

val data = Seq((1.0, 0.1, 0.5),(0.0, 0.2, 0.6),(1.0, 0.3, 0.7),(0.0, 0.4, 0.8)
)val columns = Seq("label", "feature1", "feature2")val df: DataFrame = data.toDF(columns: _*)
df.show()

此部分使用示例数据创建了一个名为df的DataFrame,其中每一行表示一个数据点,具有标签("label")和两个特征("feature1"和"feature2")。show()方法用于显示DataFrame。

val assembler = new VectorAssembler().setInputCols(Array("feature1", "feature2")).setOutputCol("features")val assembledData = assembler.transform(df)
assembledData.show()

使用VectorAssembler将"feature1"和"feature2"列组合成名为"features"的单列。结果的DataFrame存储在assembledData中,并显示出来。

val lr = new LogisticRegression().setLabelCol("label").setFeaturesCol("features").setMaxIter(10).setRegParam(0.01)

此部分创建了一个逻辑回归模型(lr)并设置了一些参数,例如标签列,特征列,最大迭代次数(setMaxIter)和正则化参数(setRegParam)。

val lrModel = lr.fit(assembledData)

使用fit方法在组合数据(assembledData)上训练逻辑回归模型。

val summary = lrModel.summary
println(s"Coefficients: ${lrModel.coefficients}")
println(s"Intercept: ${lrModel.intercept}")
println(s"Objective History: ${summary.objectiveHistory.mkString(", ")}")

        此部分输出逻辑回归模型训练的各种结果。显示了系数,截距和训练过程中目标函数的历史记录。summary对象提供了有关训练摘要的其他信息。

这里使用scala 语法相当繁琐,转换为python的语法就会简单很多

python示例

from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression# 创建 Spark 会话
spark = SparkSession.builder \.appName("LogisticRegressionExample") \.master("spark://10.0.0.102:7077") \
.getOrCreate()# 创建包含一些示例数据的 DataFrame
data = [(1.0, 0.1, 0.5),(0.0, 0.2, 0.6),(1.0, 0.3, 0.7),(0.0, 0.4, 0.8)
]columns = ["label", "feature1", "feature2"]df = spark.createDataFrame(data, columns)
df.show()# 使用 VectorAssembler 将特征列合并成一个特征向量
assembler = VectorAssembler(inputCols=["feature1", "feature2"], outputCol="features")
assembledData = assembler.transform(df)
assembledData.show()# 创建逻辑回归模型
lr = LogisticRegression(labelCol="label", featuresCol="features", maxIter=10, regParam=0.01)# 拟合模型
lrModel = lr.fit(assembledData)# 查看模型的训练结果
print("Coefficients: {}".format(lrModel.coefficients))
print("Intercept: {}".format(lrModel.intercept))
print("Objective History: {}".format(lrModel.summary.objectiveHistory()))

此时可以登录到spark web上查看任务情况

http://10.0.0.102:8081/

spark web ui 的端口信息可以通过以下方式查看 

ps -ef |grep webui-port

当资源不足时,执行代码过程中没五秒钟会输出一次提示信息(不影响代码执行)

23/12/22 00:54:47 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

相关文章:

Spark Shell的简单使用

简介 Spark shell是一个特别适合快速开发Spark原型程序的工具&#xff0c;可以帮助我们熟悉Scala语言。即使你对Scala不熟悉&#xff0c;仍然可以使用这个工具。Spark shell使得用户可以和Spark集群交互&#xff0c;提交查询&#xff0c;这便于调试&#xff0c;也便于初学者使用…...

Springsecurty【2】认证连接MySQL

1.前期准备 基于Spring Initializr创建SpringBoot项目&#xff08;基于SpringBoot 2.7.12版本&#xff09;&#xff0c;实现与MyBatisPlus的项目整合。分别导入&#xff1a;CodeGenerator和MyBatisPlusConfig。 CodeGenerator&#xff1a;用于MybatisPlus代码生成&#xff1b;…...

.Net 访问电子邮箱-LumiSoft.Net,好用

序言&#xff1a; 网上找了很多关于.Net如何访问电子邮箱的方法&#xff0c;但是大多数都达不到想要的需求&#xff0c;只有一些 收发邮件。因此 花了很大功夫去看 LumiSoft.Net.dll 的源码&#xff0c;总算做出自己想要的结果了&#xff0c;果然学习诗人进步。 介绍&#xff…...

谷粒商城-商品服务-新增商品功能开发(商品图片无法展示问题没有解决)

在网关配置路由 - id: member_routeuri: lb://gulimemberpredicates:- Path/api/gulimember/**filters:- RewritePath/api/(?<segment>.*),/$\{segment}并将所有逆向生成的工程调式出来 获取分类关联的品牌 例如&#xff1a;手机&#xff08;分类&#xff09;-> 品…...

Open3D 点云数据处理基础(Python版)

Open3D 点云数据处理基础&#xff08;Python版&#xff09; 文章目录 1 概述 2 安装 2.1 PyCharm 与 Python 安装 2.3 Anaconda 安装 2.4 Open3D 0.13.0 安装 2.5 新建一个 Python 项目 3 点云读写 4 点云可视化 2.1 可视化单个点云 2.2 同一窗口可视化多个点云 2.3…...

使用vue-qr,报错in ./node_modules/vue-qr/dist/vue-qr.js

找到node_modules—>vue-qr/dist/vue-qr.js文件&#xff0c;搜…e,将…去掉&#xff0c;然后重新运行项目。...

百川2大模型微调问题解决

之前用https://github.com/FlagAlpha/Llama2-Chinese微调过几个模型&#xff0c;总体来说llama2的生态还是比较好的&#xff0c;过程很顺利。微调百川2就没那么顺利了&#xff0c;所以简单做个记录 1. 数据准备&#xff0c;我的数据是单轮对话&#xff0c;之前微调llama2已经按…...

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性&#xff0c;即原子性&#xff08;Atomicity)、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09;。 1. 原子性指的是事务中所有操作都是原子性的&#xff0c;要…...

D3839|完全背包

完全背包&#xff1a; 首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历&#xff0c;为了保证每个物品仅被添加一次。 for(int i 0; i < weight.size(); i) { // 遍历物品for(int j bagWeight; j > weight[i]; j--) { // 遍历背包容量dp[j] max(dp[j], dp[j…...

Java之Synchronized与锁升级

Synchronized与锁升级 一、概述 在多线程并发编程中 synchronized 一直是元老级角色&#xff0c;很多人都会称呼它为重量级锁。但是&#xff0c;随着 Java SE 1.6 对 synchronized 进行了各种优化之后&#xff0c;有些情况下它就并不那么重了。 本文详细介绍 Java SE 1.6 中为…...

kitex出现:open conf/test/conf.yaml: no such file or directory

open conf/test/conf.yaml: no such file or directory https://github.com/cloudwego/cwgo/issues/120 https://github.com/cloudwego/cwgo/issues/29 在使用Kitex生成的代码中&#xff0c;单元测试时回报错&#xff0c;如标题所示。出现该错的原因是&#xff0c;biz/servic…...

sql server多表查询

查询目标 现在有学生表和学生选课信息表&#xff0c;stu和stuSelect&#xff0c;stu中包含学生用户名、名字&#xff0c;stuSelect表中包含学生用户名&#xff0c;所选课程名 学生表&#xff1a; nameusername李明Li Ming李华Li Hua 学生选课表&#xff1a; usernameCourse…...

如何利用PPT绘图并导出清晰图片

在写论文的过程中&#xff0c;免不了需要绘图&#xff0c;但是visio等软件绘图没有在ppt上绘图比较熟练&#xff0c;尤其流程图结构图. 但是ppt导出的图片也不够清晰&#xff0c;默认分辨率是96dpi&#xff0c;而杂志投稿一般要求至300dpi。解决办法如下&#xff1a; 1.打开注…...

1.倒排索引 2.逻辑斯提回归算法

1.倒排索引 https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes 倒排索引&#xff08;Inverted Index&#xff09;是一种数据结构&#xff0c;用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用&#…...

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…...

四. 基于环视Camera的BEV感知算法-BEVDepth

目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…...

CentOS系统环境搭建(二十五)——使用docker compose安装mysql

centos系统环境搭建专栏&#x1f517;点击跳转 文章目录 使用docker compose安装mysqlMySQL81.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 MySQL5.71.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 使用docker comp…...

协作机器人(Collaborative-Robot)安全碰撞的速度与接触力

协作机器人&#xff08;Collaborative-Robot&#xff09;的安全碰撞速度和接触力是一个非常重要的安全指标。在设计和使用协作机器人时&#xff0c;必须确保其与人类或其他物体的碰撞不会对人员造成伤害。 对于协作机器人的安全碰撞速度&#xff0c;一般会设定一个上限值&…...

第11章 GUI Page400~402 步骤二 画直线

运行效果&#xff1a; 源代码&#xff1a; /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…...

华为gre隧道全部跑静态路由

最终实现&#xff1a; 1、pc1能用nat上网ping能pc3 2、pc1能通过gre访问pc2 3、全部用静态路由做&#xff0c;没有用ospf&#xff0c;如果要用ospf&#xff0c;那么两边除了路由器上跑ospf&#xff0c;核心交换机也得用ospf r2配置&#xff1a; acl number 3000 rule 5 deny…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...