当前位置: 首页 > news >正文

【贪心】单源最短路径Python实现

文章目录

    • @[toc]
      • 问题描述
      • `Dijkstra`算法
      • `Dijkstra`算法的正确性
        • 贪心选择性质
        • 最优子结构性质
      • `Dijkstra`算法应用示例
      • 时间复杂性
      • `Python`实现

因上努力

个人主页:丷从心

系列专栏:贪心算法

果上随缘


问题描述

  • 给定一个带权有向图 G = ( V , E ) G = (V , E) G=(V,E),其中每条边的权是非负实数,给定 V V V中的一个顶点,称为源
  • 计算从源到所有其他各顶点的最短路长度

Dijkstra算法

  • Dijkstra算法是解单源最短路径问题的一个贪心算法
  • 其基本思想是,设置顶点集合 S S S,并不断地做贪心选择来扩充这个集合,一个顶点属于集合 S S S当且仅当从源到该顶点的最短路径长度已知
  • 初始时, S S S中仅含有源,设 u u u G G G的某一个顶点,把从源到 u u u且中间只经过 S S S中顶点的路称为从源到 u u u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度,用列表parent[i]记录从源到顶点 i i i的最短路径上 i i i的前一个顶点
  • Dijkstra算法每次从 V − S V - S VS中取出具有最短特殊路长度的顶点 u u u,将 u u u添加到 S S S中,同时对列表distparent做必要的修改,当dist[u] + graph[u][i] < dist[i] 时,置dist[i] = dist[u] + graph[u][i],置parent[i] = u
  • 一旦 S S S包含了所有 V V V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度

Dijkstra算法的正确性

贪心选择性质
  • Dijkstra算法所做的贪心选择是从 V − S V - S VS中选择具有最短特殊路径的顶点 u u u,从而确定从源到 u u u的最短路径长度dist[u],从源到 u u u没有更短的其他路径
  • 事实上,如果存在一条从源到 u u u且长度比dist[u]更短的路,设这条路初次走出 S S S之外到达的顶点为 x ∈ V − S x \in V - S xVS,然后徘徊于 S S S内外若干次,最后离开 S S S到达 u u u

1

  • 在这条路径上,分别记 d ( v , x ) d(v , x) d(v,x) d ( x , u ) d(x , u) d(x,u) d ( v , u ) d(v , u) d(v,u)为顶点 v v v到顶点 x x x、顶点 x x x到顶点 u u u和顶点 v v v到顶点 u u u的路长,那么dist[x] ≤ d ( v , x ) \leq d(v , x) d(v,x) d ( v , x ) + d ( x , u ) = d ( v , u ) < d i s t [ u ] d(v , x) + d(x , u) = d(v , u) < dist[u] d(v,x)+d(x,u)=d(v,u)<dist[u],利用边权的非负性,可知 d ( x , u ) ≥ 0 d(x , u) \geq 0 d(x,u)0,从而推得dist[x] < < <dist[u],此为矛盾
  • 这就证明了dist[u]是从源到顶点 u u u的最短路径长度
最优子结构性质
  • 将添加 u u u之前的 S S S称为 S ′ S^{'} S
  • 当添加了 u u u后,可能出现一条到顶点 i i i的新的特殊路

2

  • 如果这条新特殊路是经过 S ′ S^{'} S到达顶点 u u u,然后从 u u u经一条边直接到达顶点 i i i,则这种路的最短的长度是dist[u] + + +c[u][i],此时,如果dist[u] + + +c[u][i] < < <dist[i],则算法中用dist[u] + + +c[u][i]作为dist[i]的新值
  • 如果这条新特殊路经过 S ′ S^{'} S到达 u u u后,不是从 u u u经一条边直接到达 i i i,而是回到 S ′ S^{'} S中某个顶点 x x x,最后才到达顶点 i i i,那么由于 x x x S ′ S^{'} S中,因此 x x x u u u先加入 S S S,故从源到 x x x的路的长度比从源到 u u u,再从 u u u x x x的路的长度小,于是当前dist[i]的值小于这条新特殊路的长度,因此,在算法中不必考虑这种路
  • 由此可知,不论算法中dist[u]的值是否有变化,它总是关于当前顶点集 S S S到顶点 u u u的最短特殊路径长度

Dijkstra算法应用示例

  • 对下图中的有向图,应用Dijkstra算法计算从源顶点 1 1 1到其他顶点间最短路径的过程如下表所示

3

迭代 S S S u u udist[2]dist[3]dist[4]dist[5]
初始 { 1 } \set{1} {1} − - 10 10 10 m a x i n t maxint maxint 30 30 30 100 100 100
1 1 1 { 1 , 2 } \set{1 , 2} {1,2} 2 2 2 10 10 10 60 60 60 30 30 30 100 100 100
2 2 2 { 1 , 2 , 3 } \set{1 , 2 , 3} {1,2,3} 4 4 4 10 10 10 50 50 50 30 30 30 90 90 90
3 3 3 { 1 , 2 , 4 , 3 } \set{1 , 2 , 4 , 3} {1,2,4,3} 3 3 3 10 10 10 50 50 50 30 30 30 60 60 60
4 4 4 { 1 , 2 , 4 , 3 , 5 } \set{1 , 2 , 4 , 3 , 5} {1,2,4,3,5} 5 5 5 10 10 10 50 50 50 30 30 30 60 60 60

时间复杂性

  • 对于一个具有 n n n个顶点的带权有向图,Dijkstra算法进行二重循环,需要 O ( n 2 ) O(n^{2}) O(n2)时间

Python实现

import sysclass Graph:def __init__(self, vertices):self.V = verticesself.graph = [[0 for _ in range(vertices)] for _ in range(vertices)]def printSolution(self, dist, parent):for v in range(self.V):path = []curr = vwhile curr != -1:path.append(curr)curr = parent[curr]path.reverse()print((v, dist[v], path))def minDistance(self, dist, sptSet):min_value = sys.maxsizemin_index = -1for v in range(self.V):if dist[v] < min_value and not sptSet[v]:min_value = dist[v]min_index = vreturn min_indexdef dijkstra(self, src):dist = [sys.maxsize] * self.Vdist[src] = 0sptSet = [False] * self.Vparent = [-1] * self.Vfor _ in range(self.V):u = self.minDistance(dist, sptSet)sptSet[u] = Truefor v in range(self.V):if self.graph[u][v] != 0 and 0 < dist[u] + self.graph[u][v] < dist[v] and not sptSet[v]:dist[v] = dist[u] + self.graph[u][v]parent[v] = uself.printSolution(dist, parent)g = Graph(9)
g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],[4, 0, 8, 0, 0, 0, 0, 11, 0],[0, 8, 0, 7, 0, 4, 0, 0, 2],[0, 0, 7, 0, 9, 14, 0, 0, 0],[0, 0, 0, 9, 0, 10, 0, 0, 0],[0, 0, 4, 14, 10, 0, 2, 0, 0],[0, 0, 0, 0, 0, 2, 0, 1, 6],[8, 11, 0, 0, 0, 0, 1, 0, 7],[0, 0, 2, 0, 0, 0, 6, 7, 0]]
src = 0print(f'(顶点, 以顶点 {src} 为源的最短路径长度, 最短路径)')
print('-' * 40)g.dijkstra(src)print('-' * 40)
(顶点, 以顶点 0 为源的最短路径长度, 最短路径)
----------------------------------------
(0, 0, [0])
(1, 4, [0, 1])
(2, 12, [0, 1, 2])
(3, 19, [0, 1, 2, 3])
(4, 21, [0, 7, 6, 5, 4])
(5, 11, [0, 7, 6, 5])
(6, 9, [0, 7, 6])
(7, 8, [0, 7])
(8, 14, [0, 1, 2, 8])
----------------------------------------

相关文章:

【贪心】单源最短路径Python实现

文章目录 [toc]问题描述Dijkstra算法Dijkstra算法的正确性贪心选择性质最优子结构性质 Dijkstra算法应用示例时间复杂性Python实现 个人主页&#xff1a;丷从心 系列专栏&#xff1a;贪心算法 问题描述 给定一个带权有向图 G ( V , E ) G (V , E) G(V,E)&#xff0c;其中每…...

Spark Shell的简单使用

简介 Spark shell是一个特别适合快速开发Spark原型程序的工具&#xff0c;可以帮助我们熟悉Scala语言。即使你对Scala不熟悉&#xff0c;仍然可以使用这个工具。Spark shell使得用户可以和Spark集群交互&#xff0c;提交查询&#xff0c;这便于调试&#xff0c;也便于初学者使用…...

Springsecurty【2】认证连接MySQL

1.前期准备 基于Spring Initializr创建SpringBoot项目&#xff08;基于SpringBoot 2.7.12版本&#xff09;&#xff0c;实现与MyBatisPlus的项目整合。分别导入&#xff1a;CodeGenerator和MyBatisPlusConfig。 CodeGenerator&#xff1a;用于MybatisPlus代码生成&#xff1b;…...

.Net 访问电子邮箱-LumiSoft.Net,好用

序言&#xff1a; 网上找了很多关于.Net如何访问电子邮箱的方法&#xff0c;但是大多数都达不到想要的需求&#xff0c;只有一些 收发邮件。因此 花了很大功夫去看 LumiSoft.Net.dll 的源码&#xff0c;总算做出自己想要的结果了&#xff0c;果然学习诗人进步。 介绍&#xff…...

谷粒商城-商品服务-新增商品功能开发(商品图片无法展示问题没有解决)

在网关配置路由 - id: member_routeuri: lb://gulimemberpredicates:- Path/api/gulimember/**filters:- RewritePath/api/(?<segment>.*),/$\{segment}并将所有逆向生成的工程调式出来 获取分类关联的品牌 例如&#xff1a;手机&#xff08;分类&#xff09;-> 品…...

Open3D 点云数据处理基础(Python版)

Open3D 点云数据处理基础&#xff08;Python版&#xff09; 文章目录 1 概述 2 安装 2.1 PyCharm 与 Python 安装 2.3 Anaconda 安装 2.4 Open3D 0.13.0 安装 2.5 新建一个 Python 项目 3 点云读写 4 点云可视化 2.1 可视化单个点云 2.2 同一窗口可视化多个点云 2.3…...

使用vue-qr,报错in ./node_modules/vue-qr/dist/vue-qr.js

找到node_modules—>vue-qr/dist/vue-qr.js文件&#xff0c;搜…e,将…去掉&#xff0c;然后重新运行项目。...

百川2大模型微调问题解决

之前用https://github.com/FlagAlpha/Llama2-Chinese微调过几个模型&#xff0c;总体来说llama2的生态还是比较好的&#xff0c;过程很顺利。微调百川2就没那么顺利了&#xff0c;所以简单做个记录 1. 数据准备&#xff0c;我的数据是单轮对话&#xff0c;之前微调llama2已经按…...

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性&#xff0c;即原子性&#xff08;Atomicity)、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09;。 1. 原子性指的是事务中所有操作都是原子性的&#xff0c;要…...

D3839|完全背包

完全背包&#xff1a; 首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历&#xff0c;为了保证每个物品仅被添加一次。 for(int i 0; i < weight.size(); i) { // 遍历物品for(int j bagWeight; j > weight[i]; j--) { // 遍历背包容量dp[j] max(dp[j], dp[j…...

Java之Synchronized与锁升级

Synchronized与锁升级 一、概述 在多线程并发编程中 synchronized 一直是元老级角色&#xff0c;很多人都会称呼它为重量级锁。但是&#xff0c;随着 Java SE 1.6 对 synchronized 进行了各种优化之后&#xff0c;有些情况下它就并不那么重了。 本文详细介绍 Java SE 1.6 中为…...

kitex出现:open conf/test/conf.yaml: no such file or directory

open conf/test/conf.yaml: no such file or directory https://github.com/cloudwego/cwgo/issues/120 https://github.com/cloudwego/cwgo/issues/29 在使用Kitex生成的代码中&#xff0c;单元测试时回报错&#xff0c;如标题所示。出现该错的原因是&#xff0c;biz/servic…...

sql server多表查询

查询目标 现在有学生表和学生选课信息表&#xff0c;stu和stuSelect&#xff0c;stu中包含学生用户名、名字&#xff0c;stuSelect表中包含学生用户名&#xff0c;所选课程名 学生表&#xff1a; nameusername李明Li Ming李华Li Hua 学生选课表&#xff1a; usernameCourse…...

如何利用PPT绘图并导出清晰图片

在写论文的过程中&#xff0c;免不了需要绘图&#xff0c;但是visio等软件绘图没有在ppt上绘图比较熟练&#xff0c;尤其流程图结构图. 但是ppt导出的图片也不够清晰&#xff0c;默认分辨率是96dpi&#xff0c;而杂志投稿一般要求至300dpi。解决办法如下&#xff1a; 1.打开注…...

1.倒排索引 2.逻辑斯提回归算法

1.倒排索引 https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes 倒排索引&#xff08;Inverted Index&#xff09;是一种数据结构&#xff0c;用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用&#…...

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…...

四. 基于环视Camera的BEV感知算法-BEVDepth

目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…...

CentOS系统环境搭建(二十五)——使用docker compose安装mysql

centos系统环境搭建专栏&#x1f517;点击跳转 文章目录 使用docker compose安装mysqlMySQL81.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 MySQL5.71.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 使用docker comp…...

协作机器人(Collaborative-Robot)安全碰撞的速度与接触力

协作机器人&#xff08;Collaborative-Robot&#xff09;的安全碰撞速度和接触力是一个非常重要的安全指标。在设计和使用协作机器人时&#xff0c;必须确保其与人类或其他物体的碰撞不会对人员造成伤害。 对于协作机器人的安全碰撞速度&#xff0c;一般会设定一个上限值&…...

第11章 GUI Page400~402 步骤二 画直线

运行效果&#xff1a; 源代码&#xff1a; /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...