vue3整合Element-Plus,极速上手。
条件分页查询:
需求分析:
form表单
Button按钮
Table表格
Pagination分页
页面布局:
搜索表单:
如果表单封装的数据较多,建议绑定到一个对象中。
定义表单搜索接口:
export interface SearchEmpModel {
name: string, //姓名
gender: string, //性别
begin: string, //开始时间
end: string, //结束时间
date: string[] //时间范围
}
定义表单搜索对象:
//搜索表单对象
let searchEmp = ref<SearchEmpModel>({
begin: '',
end: '',
date: [],
name: '',
gender: ''
})
watch监听:
作用:
侦听一个或多个响应式数据源,并在数据源变化时调用所给的回调函数。
用法:
1,导入watch函数
import { ref, watch } from 'vue'
const a = ref<string>('')
2,执行watch函数,传入要监听的响应式数据(ref对象)和回调函数
watch(a, (newVal , oldVal) => { //侦听a的变化
console.log(`a的值为: newVal: ${newVal}, oldVal: ${oldVal}`);
})
侦听对象的单个属性:
import { ref, watch } from 'vue'
const user = ref({name:'', age:10})
watch( () => user.value.name , (newVal , oldVal) => { //侦听user对象中name的变化
console.log(`a的值为: newVal: ${newVal}, oldVal: ${oldVal}`);
})
侦听对象的全部属性:(深度侦听)
import { ref, watch } from 'vue'
const user = ref({name:'', age:10})
watch(user, (newVal , oldVal) => { //侦听user对象中的全部属性的变化
console.log(`a的值为: newVal: ${newVal}, oldVal: ${oldVal}`);
}, {deep: true})
//监听searchEmp的date属性
watch(() => searchEmp.value.date, (newVal, oldVal) => {
if(newVal) {
searchEmp.value.begin = newVal[0]
searchEmp.value.end = newVal[1]
}else {
searchEmp.value.begin = ''
searchEmp.value.end = ''
}
})
第三个可选参数,常见两个选项:
deep(boolean):是否深度侦听,默认浅层侦听。
immediate(boolean):是否在侦听创建时立即触发回调函数。
数据表格:
<el-table>标签
首列显示复选框,需要把<el-table-column> 标签的type属性改为 selection
在操作的那一列<el-table-column>,需要使用插槽,在这一列中定义<temlpate>
<el-pagination>标签
1,绑定了三个属性:current-page(当前页码),current-size(每页显示的记录数),total(总共有多少条记录)
2,绑定了两个方法:handleSizeChange(页面大小发生变化时触发),handleCurrentChange(当前页码发生变化时触发)
3,动态绑定了:page-sizes属性,里面定义的是,下拉菜单每页显示的条数。
4,layout属性,里面填写的是,分页条的各个功能,它们出现的位置或者,有多少个,就决定了,页面显示的效果。
页面交互:
查询:
逻辑:点击查询按钮的时候,根据输入的条件进行参数分页查寻。
参数:此案例包含:name,gender,begin,end,page,pageSize
使用钩子函数,在页面加载完毕就要开始,调用查询的方法。
查询到的数据要赋值给,我们定义的table要展示的数据表格数组。
总记录数:要封装到分页参数对象里面的total属性中。
清空:
逻辑::点击清空时,清空搜索表单中表单项的内容,并再次查询最新数据。
页码发生变化:
handleCurrentChange,方法里面定义一个参数,表示当前的页码。
每页显示的记录数发生变化:
handleSizeChange,方法里面写一个参数,代表每页显示的记录数的变化。
新增员工:
修改员工:
删除员工:
登录认证:
打包部署(nginx):
相关文章:
vue3整合Element-Plus,极速上手。
条件分页查询: 需求分析: form表单 Button按钮 Table表格 Pagination分页 页面布局: 搜索表单: 如果表单封装的数据较多,建议绑定到一个对象中。 …...
学习Vue2.x
文章目录 一、使用Vue脚手架1.ref和props属性2.mixin混入3.组件化编码流程4.webStorage5.组件自定义事件6.全局事件总线7.消息订阅与发布 二、使用步骤1.引入库 一、使用Vue脚手架 1.ref和props属性 ref属性: (1)被用来给元素或子组件注册应…...
新手如何快速熟悉代码,写出东西(持续更新)
目录 第一章、最小编程任务的设想1.1)程序员入门会遇到的问题1.2)最小编程任务的设想1.3)编程逻辑1.4)具体需求 第二章、最小编程单元的练习2.1)代码/需求方面2.1.1)初级练习2.1.2)中级练习2.1.…...
11-网络安全框架及模型-软件安全能力成熟度模型(SSCMM)
目录 软件安全能力成熟度模型 1 背景概述 2 主要内容 3 成熟度等级定义 4 关键过程和实践 5 评估方法 6 改进建议 7 持续改进 8 主要价值 9 应用场景 10 优势和局限性 备注 软件安全能力成熟度模型 1 背景概述 SSCMM模型是软件安全能力成熟度模型,它描…...
Linux操作系统基础知识点
Linux是一种计算机操作系统,其内核由林纳斯本纳第克特托瓦兹(Linus Benedict Torvalds)于1991年首次发布。Linux操作系统通常与GNU套件一起使用,因此也被称为GNU/Linux。它是一种类UNIX的操作系统,设计为多用户、多任务…...
python 通过opencv及face_recognition识别人脸
效果: 使用Python的cv2库和face_recognition库来进行人脸检测和比对的 0是代表一样 认为是同一人。 代码: pip install opencv-python pip install face_recognition# 导入cv2库,用于图像处理 import cv2 # 导入face_recognition库&#…...
Android开发中常见的Hook技术有哪些?
Hook技术介绍 Hook技术是一种在软件开发中常见的技术,它允许开发者在特定的事件发生时插入自定义的代码逻辑。常见的应用场景包括在函数调用前后执行特定的操作,或者在特定的事件发生时触发自定义的处理逻辑。 在Android开发中,Hook通常是通…...
【linux c多线程】线程的创建,线程信息的获取,获取线程返回值
线程创建 专栏内容: 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构,以及如何实现多机的数据库节点的多读多写,与传统主备,MPP的区别,技术难点的分析,数据元数据同步,多主节点的情况下对…...
MFC或QT中,自绘控件的目的和实现步骤
MFC自绘控件的步骤 自绘控件的目的是为了能够自定义控件的外观、行为和交互方式,以满足特定的需求,同时增强应用程序的用户体验。 实现步骤如下: 1、创建一个继承自MFC控件基类(如CButton、CStatic等)的自定义控件类…...
ceph集群搭建详细教程(ceph-deploy)
ceph-deploy比较适合生产环境,不是用cephadm搭建。相对麻烦一些,但是并不难,细节把握好就行,只是命令多一些而已。 实验环境 服务器主机public网段IP(对外服务)cluster网段IP(集群通信&#x…...
机器视觉系统选型-避免畸变
在定位及高精度测量的系统中,镜头畸变的影响尤其重要 • 使用远心镜头 • 进行系统标定...
机器学习笔记 - 线性判别分析(LDA)的原理和应用
一、LDA简述 线性判别分析(LDA)是监督机器学习中用于解决多类分类问题的一种方法。LDA通过数据降维来分离具有多个特征的多个类。这项技术在数据科学中很重要,因为它有助于优化机器学习模型。 线性判别分析,也称为正态判别分析 (NDA) 或判别函数分析 (DFA),遵循生成模型框…...
基于5G智能网关的智慧塔吊监测方案
塔吊是建筑施工中必不可少的设施,由于塔吊工作重心高、起重载荷大、人工视距/视角受限等因素,也使得塔吊在工作过程中着较多的危险因素。对此,可以部署基于工业5G智能网关搭建智慧塔吊安全监测系统,实现对塔吊运行的全局精细监测感…...
CountDownLatch详解以及用法示例
一、什么是CountDownLatch CountDownLatch中count down是倒数的意思,latch则是门闩的含义。整体含义可以理解为倒数的门栓。 CountDownLatch的作用也是如此,在构造CountDownLatch(int count):的时候需要传入一个整数count,在这个…...
【http】缓存协议
✨ 专栏介绍 在当今互联网时代,计算机网络已经成为了人们生活和工作中不可或缺的一部分。而要实现计算机之间的通信和数据传输,就需要依靠各种网络协议来进行规范和约束。无论是浏览网页、发送电子邮件还是进行在线交流,都离不开各种各样的网…...
vscode中使用GitHub Copilot Chat
文章目录 一、什么是Github Copilot Chat二、安装使用三、如何使用1. 聊天功能2. 内联功能 一、什么是Github Copilot Chat GitHub Copilot Chat 由 OpenAI 的 GPT-4 大型多模态模型提供支持,能带来更准确的代码建议、解释和指导。GitHub Copilot Chat 的内联功能可…...
lvgl 双物理显示器的驱动实现
目录 一、背景 1. 要实现的功能2. lvgl 版本 二、简单粗暴的方式 理论上可以这样实现缺陷: 三、lvgl 自身机制支持 3.1 实现思路3.2 初始化缓冲区和注册显示驱动 3.2.1 复制lv_port_disp → lv_port_disp_23.2.2 修改 lv_port_disp_2 文件3.2.3 在应用层调用显示器…...
论文阅读——X-Decoder
Generalized Decoding for Pixel, Image, and Language Towards a Generalized Multi-Modal Foundation Model 1、概述 X-Decoder没有为视觉和VL任务开发统一的接口,而是建立了一个通用的解码范式,该范式可以通过采用共同的(例如语义&#…...
【Kubernetes】控制器Statefulset
Statefulset控制器 一、概念二、Statefulset资源清单文件编写技巧2.1、查看定义Statefulset资源需要的字段2.2、查看statefulset.spec字段如何定义2.3、查看statefulset的spec.template字段如何定义 三、Statefulset使用案例:部署web站点3.1、编写一个Statefulset资…...
智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鱼鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鱼鹰算法4.实验参数设定5.算法结果6.参考文献7.MA…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
