分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
目录
- 分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测 python代码
1.输入多个特征,输出单个变量,多变量分类预测;
2.data为数据集,excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;
3.命令窗口输出Precision、Recall、F1 Score多指标评价;
4.可视化: 通过使用Matplotlib,代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的对比图和混淆矩阵。
具体实现步骤如下:
基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测是一种结合了支持向量机递归特征消除(SVM-RFE)和LSTM神经网络的方法。下面是算法的基本步骤:
数据准备:准备包含多个输入特征和一个输出变量的训练数据集。特征选择:使用SVM-LSTM算法对输入特征进行排序和选择。SVM-RFE是一种递归特征消除算法,它通过反复训练支持向量机(SVM)模型,并剔除最不重要的特征,直到达到指定的特征数量或达到某个停止准则。
特征提取:使用SVM-RFE选择的特征作为输入,从训练数据集中提取这些特征。
神经网络构建与训练:构建了一个深度学习模型,用于处理输入数据并输出类别预测。模型的结构可以根据具体问题进行调整和优化,例如,可以调整LSTM层中的神经元数量、添加更多的隐藏层等,以适应不同的任务和数据
预测:使用训练好的LSTM神经网络模型对新的输入特征进行预测。将这些特征输入到训练好的神经网络中,得到对应的输出。
程序设计
- 完整程序和数据私信博主回复Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测。
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测 目录 分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 基于SVM-RFE-LSTM的特征…...

JetBrains Rider使用总结
简介: JetBrains Rider 诞生于2016年,一款适配于游戏开发人员,是JetBrains旗下一款非常年轻的跨平台 .NET IDE。目前支持包括.NET 桌面应用、服务和库、Unity 和 Unreal Engine 游戏、Xamarin 、ASP.NET 和 ASP.NET Core web 等多种应用程序…...

C# Emgu.CV4.8.0读取rtsp流录制mp4可分段保存
【官方框架地址】 https://github.com/emgucv/emgucv 【算法介绍】 EMGU CV(Emgu Computer Vision)是一个开源的、基于.NET框架的计算机视觉库,它提供了对OpenCV(开源计算机视觉库)的封装。EMGU CV使得在.NET应用程序…...

java碳排放数据信息管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 java Web碳排放数据信息管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环 境为TOMCAT7.0,Myeclipse8.5开发,数据库为…...

K8S陈述式资源管理(1)
命令行: kubectl命令行工具 优点: 90%以上的场景都可以满足对资源的增,删,查比较方便,对改不是很友好 缺点:命令比较冗长,复杂,难记声明式 声明式:K8S当中的yaml文件来实现资源管理 GUI:图形…...

STL map容器与pair类模板(解决扫雷问题)
CSTL之Map容器 - 数据结构教程 - C语言网 (dotcpp.com)https://www.dotcpp.com/course/118CSTL之Pair类模板 - 数据结构教程 - C语言网 (dotcpp.com)https://www.dotcpp.com/course/119 刷到一个扫雷的题目,之前没有玩怎么过扫雷,于是我就去玩了玩…...

【React系列】Portals、Fragment
本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) Portals 某些情况下,我们希望渲染的内容独立于父组件,甚至是独立于当前挂载到的DOM元素中&am…...

ByteTrack算法流程的简单示例
ByteTrack ByteTrack算法是将t帧检测出来的检测框集合 D t {\mathcal{D}_{t}} Dt 和t-1帧预测轨迹集合 T ~ t − 1 {\tilde{T}_{t-1}} T~t−1 进行匹配关联得到t帧的轨迹集合 T t {T_{t}} Tt。 首先使用检测器检测t帧的图像得到检测框集合 D t {\mathcal{D}_{t}} …...

免费的GPT4来了,你还不知道吗?
程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…...

win10报错“zlib.dll文件丢失,软件无法启动”,修复方法,亲测有效
zlib.dll文件是一个由Zlib创建的动态链接库文件,它是用于Windows操作系统的数据压缩和解压缩的软件。Zlib是一个广泛使用的软件库,广泛应用在许多不同类型的软件中,包括游戏、浏览器和操作系统。 zlib.dll的主要作用是提供数据压缩和解压缩的…...
MFC中如何使用CListCtrl可以编辑,并添加鼠标右键及双击事件。
要在MFC中使用CListCtrl来实现编辑功能,可以按照以下步骤进行操作: 在对话框资源中添加CListCtrl控件,并设置合适的属性。在对话框类的头文件中添加成员变量来管理CListCtrl控件,例如: CListCtrl m_listCtrl; 3. 在O…...

[每周一更]-(第81期):PS抠图流程(扭扭曲曲的身份证修正)
应朋友之急,整理下思路,分享一下~~ 分两步走:先用磁性套索工具圈出要处理的图;然后使用透视剪裁工具,将扭曲的图片拉平即可;(macbook pro) 做事有规则,才能更高效;用什么工具,先列举…...

Kafka安全认证机制详解之SASL_PLAIN
一、概述 官方文档: https://kafka.apache.org/documentation/#security 在官方文档中,kafka有五种加密认证方式,分别如下: SSL:用于测试环境SASL/GSSAPI (Kerberos) :使用kerberos认证,密码是…...

2023南京理工大学通信工程818信号系统及数电考试大纲
注:(Δ)表示重点内容。具体内容详见博睿泽信息通信考研论坛 参考书目: [1] 钱玲,谷亚林,王海青. 信号与系统(第五版). 北京:电子工业出版社 [2] 郑君里,应…...

wsl(ubuntu)创建用户
我们打卡ubuntu窗口,如果没有创建用户,那么默认是root用户 用户的增删改查 查 查询所有的用户列表 cat /etc/passwd | cut -d: -f1cat /etc/passwd: 这个命令用于显示 /etc/passwd 文件的内容。/etc/passwd 文件包含了系统上所有用户的基本信息。每一…...

[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-8Lag Compensator滞后补偿器
本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-8Lag Compensator滞后补偿器 从稳态误差入手(steady state Error) 误差 Error : E ( s ) R ( s ) − X ( s ) R ( s ) − E ( s ) ⋅ K G …...

swift-碰到的问题
如何让工程不使用storyboard和scene 删除info.plist里面的Application Scene mainifest 删除SceneDelegate.swift 删除AppDelegate.swift里面的这两个方法 func application(_ application: UIApplication, configurationForConnecting connectingSceneSession: UISceneSession…...

安全与认证Week4
目录 目录 Web Security (TLS/SSL) 各层安全协议 Transport Layer Security (TLS)传输层安全性(TLS) SSL和TLS的联系与区别 TLS connection&session 连接与会话 题目2答案点 TLS ArchitectureTLS架构(5个协议) 题目1答案点 Handshake Proto…...
Golang高质量编程与性能调优实战
1.1 简介 高质量:编写的代码能否达到正确可靠、简洁清晰的目标 各种边界条件是否考虑完备异常情况处理,稳定性保证易读易维护编程原则 简单性 消除多余的重复性,以简单清晰的逻辑编写代码不理解的代码无法修复改进可读性 代码是写给人看的,并不是机器编写可维护代码的第一…...

vite 如何打包 dist 文件到 zip 使用插件 vite-plugin-zip-pack,vue3 ts
vite 如何打包 dist 文件到 zip 使用插件 vite-plugin-zip-pack,vue3 ts 开发过程中一个经常做的事就是将 ./dist 文件夹打包成 zip 分发。 每次手动打包还是很费劲的, vite 同样也有能把 ./dist 文件夹打包成 .zip 的插件,当然这个打包的文…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...