分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
目录
- 分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果

基本描述
基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测 python代码
1.输入多个特征,输出单个变量,多变量分类预测;
2.data为数据集,excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;
3.命令窗口输出Precision、Recall、F1 Score多指标评价;
4.可视化: 通过使用Matplotlib,代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的对比图和混淆矩阵。
具体实现步骤如下:
基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测是一种结合了支持向量机递归特征消除(SVM-RFE)和LSTM神经网络的方法。下面是算法的基本步骤:
数据准备:准备包含多个输入特征和一个输出变量的训练数据集。特征选择:使用SVM-LSTM算法对输入特征进行排序和选择。SVM-RFE是一种递归特征消除算法,它通过反复训练支持向量机(SVM)模型,并剔除最不重要的特征,直到达到指定的特征数量或达到某个停止准则。
特征提取:使用SVM-RFE选择的特征作为输入,从训练数据集中提取这些特征。
神经网络构建与训练:构建了一个深度学习模型,用于处理输入数据并输出类别预测。模型的结构可以根据具体问题进行调整和优化,例如,可以调整LSTM层中的神经元数量、添加更多的隐藏层等,以适应不同的任务和数据
预测:使用训练好的LSTM神经网络模型对新的输入特征进行预测。将这些特征输入到训练好的神经网络中,得到对应的输出。
程序设计
- 完整程序和数据私信博主回复Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测。
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测
分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测 目录 分类预测 | Python实现基于SVM-RFE-LSTM的特征选择算法结合LSTM神经网络的多输入单输出分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 基于SVM-RFE-LSTM的特征…...
JetBrains Rider使用总结
简介: JetBrains Rider 诞生于2016年,一款适配于游戏开发人员,是JetBrains旗下一款非常年轻的跨平台 .NET IDE。目前支持包括.NET 桌面应用、服务和库、Unity 和 Unreal Engine 游戏、Xamarin 、ASP.NET 和 ASP.NET Core web 等多种应用程序…...
C# Emgu.CV4.8.0读取rtsp流录制mp4可分段保存
【官方框架地址】 https://github.com/emgucv/emgucv 【算法介绍】 EMGU CV(Emgu Computer Vision)是一个开源的、基于.NET框架的计算机视觉库,它提供了对OpenCV(开源计算机视觉库)的封装。EMGU CV使得在.NET应用程序…...
java碳排放数据信息管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 java Web碳排放数据信息管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环 境为TOMCAT7.0,Myeclipse8.5开发,数据库为…...
K8S陈述式资源管理(1)
命令行: kubectl命令行工具 优点: 90%以上的场景都可以满足对资源的增,删,查比较方便,对改不是很友好 缺点:命令比较冗长,复杂,难记声明式 声明式:K8S当中的yaml文件来实现资源管理 GUI:图形…...
STL map容器与pair类模板(解决扫雷问题)
CSTL之Map容器 - 数据结构教程 - C语言网 (dotcpp.com)https://www.dotcpp.com/course/118CSTL之Pair类模板 - 数据结构教程 - C语言网 (dotcpp.com)https://www.dotcpp.com/course/119 刷到一个扫雷的题目,之前没有玩怎么过扫雷,于是我就去玩了玩…...
【React系列】Portals、Fragment
本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) Portals 某些情况下,我们希望渲染的内容独立于父组件,甚至是独立于当前挂载到的DOM元素中&am…...
ByteTrack算法流程的简单示例
ByteTrack ByteTrack算法是将t帧检测出来的检测框集合 D t {\mathcal{D}_{t}} Dt 和t-1帧预测轨迹集合 T ~ t − 1 {\tilde{T}_{t-1}} T~t−1 进行匹配关联得到t帧的轨迹集合 T t {T_{t}} Tt。 首先使用检测器检测t帧的图像得到检测框集合 D t {\mathcal{D}_{t}} …...
免费的GPT4来了,你还不知道吗?
程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…...
win10报错“zlib.dll文件丢失,软件无法启动”,修复方法,亲测有效
zlib.dll文件是一个由Zlib创建的动态链接库文件,它是用于Windows操作系统的数据压缩和解压缩的软件。Zlib是一个广泛使用的软件库,广泛应用在许多不同类型的软件中,包括游戏、浏览器和操作系统。 zlib.dll的主要作用是提供数据压缩和解压缩的…...
MFC中如何使用CListCtrl可以编辑,并添加鼠标右键及双击事件。
要在MFC中使用CListCtrl来实现编辑功能,可以按照以下步骤进行操作: 在对话框资源中添加CListCtrl控件,并设置合适的属性。在对话框类的头文件中添加成员变量来管理CListCtrl控件,例如: CListCtrl m_listCtrl; 3. 在O…...
[每周一更]-(第81期):PS抠图流程(扭扭曲曲的身份证修正)
应朋友之急,整理下思路,分享一下~~ 分两步走:先用磁性套索工具圈出要处理的图;然后使用透视剪裁工具,将扭曲的图片拉平即可;(macbook pro) 做事有规则,才能更高效;用什么工具,先列举…...
Kafka安全认证机制详解之SASL_PLAIN
一、概述 官方文档: https://kafka.apache.org/documentation/#security 在官方文档中,kafka有五种加密认证方式,分别如下: SSL:用于测试环境SASL/GSSAPI (Kerberos) :使用kerberos认证,密码是…...
2023南京理工大学通信工程818信号系统及数电考试大纲
注:(Δ)表示重点内容。具体内容详见博睿泽信息通信考研论坛 参考书目: [1] 钱玲,谷亚林,王海青. 信号与系统(第五版). 北京:电子工业出版社 [2] 郑君里,应…...
wsl(ubuntu)创建用户
我们打卡ubuntu窗口,如果没有创建用户,那么默认是root用户 用户的增删改查 查 查询所有的用户列表 cat /etc/passwd | cut -d: -f1cat /etc/passwd: 这个命令用于显示 /etc/passwd 文件的内容。/etc/passwd 文件包含了系统上所有用户的基本信息。每一…...
[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-8Lag Compensator滞后补偿器
本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-8Lag Compensator滞后补偿器 从稳态误差入手(steady state Error) 误差 Error : E ( s ) R ( s ) − X ( s ) R ( s ) − E ( s ) ⋅ K G …...
swift-碰到的问题
如何让工程不使用storyboard和scene 删除info.plist里面的Application Scene mainifest 删除SceneDelegate.swift 删除AppDelegate.swift里面的这两个方法 func application(_ application: UIApplication, configurationForConnecting connectingSceneSession: UISceneSession…...
安全与认证Week4
目录 目录 Web Security (TLS/SSL) 各层安全协议 Transport Layer Security (TLS)传输层安全性(TLS) SSL和TLS的联系与区别 TLS connection&session 连接与会话 题目2答案点 TLS ArchitectureTLS架构(5个协议) 题目1答案点 Handshake Proto…...
Golang高质量编程与性能调优实战
1.1 简介 高质量:编写的代码能否达到正确可靠、简洁清晰的目标 各种边界条件是否考虑完备异常情况处理,稳定性保证易读易维护编程原则 简单性 消除多余的重复性,以简单清晰的逻辑编写代码不理解的代码无法修复改进可读性 代码是写给人看的,并不是机器编写可维护代码的第一…...
vite 如何打包 dist 文件到 zip 使用插件 vite-plugin-zip-pack,vue3 ts
vite 如何打包 dist 文件到 zip 使用插件 vite-plugin-zip-pack,vue3 ts 开发过程中一个经常做的事就是将 ./dist 文件夹打包成 zip 分发。 每次手动打包还是很费劲的, vite 同样也有能把 ./dist 文件夹打包成 .zip 的插件,当然这个打包的文…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
