KNN 回归
K 近邻回归(K-Nearest Neighbors Regression)是一种基于实例的回归算法,用于预测连续数值型的输出变量。它的基本思想是通过找到与给定测试样本最近的 K 个训练样本,并使用它们的输出值来预测测试样本的输出。它与 K 最近邻分类类似,但是用于解决回归问题而不是分类问题。
K 近邻回归算法的基本步骤:
- 数据准备:首先,我们需要准备训练集和测试集的特征数据和对应的目标变量。特征数据可以包括数值型、分类型或二元型的特征。目标变量是我们要预测的连续数值。
- 选择 K 值和距离度量方法:K 值是指选择的最近邻居的数量,通常通过交叉验证等方法来选择最优的 K 值。距离度量方法用于计算样本之间的距离,常见的方法有欧氏距离、曼哈顿距离等。
- 计算距离:对于给定的测试样本,我们计算它与训练集中所有样本的距离。距离的计算方法取决于选择的距离度量方法。
- 选择最近的 K 个邻居:根据距离的计算结果,选择与测试样本最近的 K 个训练样本作为邻居。可以使用排序算法(如快速排序)来加快寻找最近邻居的过程。
- 预测输出:对于回归问题,根据这 K 个邻居的输出值,可以采用平均值或加权平均值作为预测输出。通常,距离较近的邻居会被赋予更高的权重。
- 模型评估:使用回归评估指标(如均方误差、平均绝对误差等)来评估模型的性能。可以使用交叉验证等方法来获取更准确的模型评估结果。
需要注意的是,K 值的选择对算法的性能有重要影响。较小的 K 值会导致模型过拟合,而较大的 K 值可能会导致模型欠拟合。因此,通常需要通过交叉验证等方法来选择最优的 K 值。
K 近邻回归算法的基本思想就是,在给定一个新的数据点,它的输出值由其 K 个最近邻数据点的输出值的平均值(或加权平均值)来预测。
简单地说,KNN 回归使用多个近邻(即 k > 1)时,预测结果为这些邻居的对应目标值的平均值。
KNN 回归也可以用 score 方法进行模型评估,返回的是 R 2 R^2 R2 分数。 R 2 R^2 R2(R-squared)分数也叫做决定系数,是用来评估模型拟合优度的指标,它表示因变量的方差能够被自变量解释的比例。 R 2 R^2 R2 的取值范围在 0 到 1 之间,越接近 1 表示模型对数据的拟合越好,即模型能够解释更多的因变量的方差。当 R 2 R^2 R2 接近 0 时,说明模型无法解释因变量的方差,拟合效果较差。简单地说, R 2 = 1 R^2 = 1 R2=1 对应完美预测, R 2 = 0 R^2 = 0 R2=0 对应常数模型,即总是预测训练集响应(y_train)的平均值。
R 2 = 1 − ( S S R / S S T ) = 1 − ∑ i = 1 n ( y i − y i ′ ) 2 ∑ i = 1 n ( y i − y m e a n ) 2 R^2 = 1 - (SSR / SST) = 1 - \frac{\displaystyle\sum_{i=1}^{n}(y_i - y'_i)^2}{\displaystyle\sum_{i=1}^{n}(y_i - y_{mean})^2} R2=1−(SSR/SST)=1−i=1∑n(yi−ymean)2i=1∑n(yi−yi′)2
其中, y y y 为实际观测值, y ′ y' y′ 为预测值, y m e a n y_{mean} ymean 为实际观测值的均值。
SSR 与 SST:
- SSR(Sum of Squares Residual)为残差平方和,表示模型预测值与实际观测值之间的差异。
- SST(Total Sum of Squares)为总平方和,表示实际观测值的方差。
一般来说,KNN 分类器有 2 个重要参数:邻居个数以及数据点之间距离的度量方法。在实践中,使用较小的邻居个数(比如 3 个或 5 个)往往可以得到较好的结果,但在不同问题中应根据具体情况调节这个参数。数据点之间的距离度量方法默认使用欧式距离,它在许多情况下的效果都很好。
如果训练集很大(特征数很多或样本数很大),KNN 模型的预测速度可能会比较慢。
使用 KNN 算法时,对数据进行预处理是很重要的。
这一算法对于有很多特征(几百或更多)的数据集往往效果不好,对于大多数特征的大多数取值都为 0 的数据集(所谓的稀疏数据集)来说,这一算法的效果尤其不好。
在 sklearn 中调用 KNN 回归模型:
from sklearn.neighbors import KNeighborsRegressorreg = KNeighborsRegressor(n_neighbors=3)
reg.fit(X_train, y_train)
y_pred = reg.predict(X_new)
相关文章:
KNN 回归
K 近邻回归(K-Nearest Neighbors Regression)是一种基于实例的回归算法,用于预测连续数值型的输出变量。它的基本思想是通过找到与给定测试样本最近的 K 个训练样本,并使用它们的输出值来预测测试样本的输出。它与 K 最近邻分类类…...

Kali Linux——获取root权限
目录 一、设置root密码 【操作命令】 【操作实例】 二、临时获取root权限 【操作命令】 【操作实例】 三、提升用户到root 1、获取root权限 2、进入/etc/passwd 3、查看root账号ID 4、找到需要修改的用户 5、输入i,进入编辑模式 6、把用户的ID改成跟r…...

听GPT 讲Rust源代码--compiler(28)
File: rust/compiler/rustc_codegen_llvm/src/llvm/mod.rs 文件rust/compiler/rustc_codegen_llvm/src/llvm/mod.rs是Rust编译器的LLVM代码生成模块的一个文件。该文件定义了一些用于与LLVM交互的结构体、枚举和常量。 此文件的主要作用是: 定义编译器和LLVM之间的接…...
Debezium日常分享系列之:Debezium2.5版本之connector for JDBC
Debezium日常分享系列之:Debezium2.5版本之connector for JDBC 一、概述二、JDBC 连接器的工作原理三、使用复杂的 Debezium 变更事件四、至少一次交付五、多项任务六、数据和列类型映射七、主键处理八、删除模式九、幂等写入十、Schema evolution十一、引用和区分大…...

爬虫网易易盾滑块案例:某乎
声明: 该文章为学习使用,严禁用于商业用途和非法用途,违者后果自负,由此产生的一切后果均与作者无关 一、滑块初步分析 js运行 atob(‘aHR0cHM6Ly93d3cuemhpaHUuY29tL3NpZ25pbg’) 拿到网址,浏览器打开网站࿰…...

机器学习笔记 - 偏最小二乘回归 (PLSR)
一、偏最小二乘回归:简介 PLS 方法构成了一个非常大的方法族。虽然回归方法可能是最流行的 PLS 技术,但它绝不是唯一的一种。即使在 PLSR 中,也有多种不同的算法可以获得解决方案。PLS 回归主要由斯堪的纳维亚化学计量学家 Svante Wold 和 Harald Martens 在 20 世纪 80 年代…...

【HTML5】第1章 HTML5入门
学习目标 了解网页基本概念,能够说出网页的构成以及网页相关名词的含义 熟悉Web标准,能够归纳Web标准的构成。 了解浏览器,能够说出各主流浏览器的特点。 了解HTML5技术,能够知道HTML5发展历程、优势以及浏览器对HTML5的支持情…...

dyld: Library not loaded: /usr/lib/swift/libswiftCoreGraphics.dylib
更新Xcode14后低版本iPhone调试报错 dyld: Library not loaded: /usr/lib/swift/libswiftCoreGraphics.dylib Referenced from: /var/containers/Bundle/Application/…/….app/… Reason: image not found 这是缺少libswiftCoreGraphics库 直接导入libswiftCoreGraphics库即…...

React Hooks中useState的介绍,并封装为useSetState函数的使用
useState 允许我们定义状态变量,并确保当这些状态变量的值发生变化时,页面会重新渲染。 useState 返回值 const [state, setState] useState(initialState);useState 返回一个长度为 2 的数组。通常,我们这样定义状态变量: co…...
5 个最适合SEI 网络空投交易等操作的钱包(Bitget Wallet,Coin98等)
大家好!Sei 网络比 SOL 快 5 倍,手续费低,还能防止前台交易。好了,我不会占用大家太多时间,让我们直奔主题吧。 Sei 官方:推特(twitter.com/SeiNetwork) 如上图所示,目前…...

.net8 AOT编绎-跨平台调用C#类库的新方法-函数导出
VB.NET AOT无法编绎DLL,微软的无能,正是你的机会 .net8 AOT编绎-跨平台调用C#类库的新方法-函数导出 1,C#命令行创建工程:dotnet new classlib -o CSharpDllExport 2,编写一个静态方法,并且为它打上UnmanagedCallersO…...

第三十八周周报:文献阅读 +BILSTM+GRU+Seq2seq
目录 摘要 Abstract 文献阅读:耦合时间和非时间序列模型模拟城市洪涝区洪水深度 现有问题 提出方法 创新点 XGBoost和LSTM耦合模型 XGBoost算法 编辑 LSTM(长短期记忆网络) 耦合模型 研究实验 数据集 评估指标 研究目的 洪…...

天津最新web前端培训班 如何提升web技能?
随着互联网的迅猛发展,web前端成为了一个热门的职业方向。越来越多的人希望能够通过学习web前端技术来提升自己的就业竞争力。为了满足市场的需求,许多培训机构纷纷推出了web前端培训课程。 什么是WEB前端 web前端就是web给用户展示的东西,…...

Linux下QT生成的(.o)、(.a)、(.so)、(.so.1)、(.so.1.0)、(.so.1.0.0)之间的区别
记录一下遇到的问题:Linux系统下Qt编译第三方动态库会生成多个.so文件,不了解的小伙伴可能很疑惑: (1)Linux 下 QT 生成的(.o)、(.a)和(.so)三个文…...

线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?
以下是关于下三角矩阵L的行列式一定等于-1的一些说明 笔者的一些话(写在最前面): 这是一篇小文,是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来,是因为这一段相对于原文是可以完全独立的,也是因为我…...

Redisson 源码解析 - 分布式锁实现过程
一、Redisson 分布式锁源码解析 Redisson是架设在Redis基础上的一个Java驻内存数据网格。在基于NIO的Netty框架上,充分的利用了Redis键值数据库提供的一系列优势,在Java实用工具包中常用接口的基础上,为使用者提供了一系列具有分布式特性的常…...

玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— 开发板详情与规格
本文主要参考: BQ3588C_开发板详情-开源鸿蒙技术交流-Bearkey-开源社区 BQ3588C_开发板规格-开源鸿蒙技术交流-Bearkey-开源社区 厦门贝启科技有限公司-Bearkey-官网 1. 开发板详情 RK3588 核心板是一款由贝启科技自主研发的基于瑞芯微 RK3588 AI 芯片的智能核心…...

Qt pro文件
1. 项目通常结构 2.pri文件 pri文件可定义通用的宏,例如创建一个COMMON.pri文件内容为 COMMON_PATH D:\MyData 然后其它pri或者pro文件如APPTemplate.pro文件中通过添加include(Common.pri) ,QtCreator就会自动在项目结构树里面创建对应的节点 3.变量…...

实验笔记之——服务器链接
最近需要做NeRF相关的开发,需要用到GPU,本博文记录本人配置服务器远程链接的过程,本博文仅供本人学习记录用~ 连上服务器 首先先确保环境是HKU的网络环境(HKU AnyConnect也可)。伙伴已经帮忙创建好用户(第一次登录会提示重新设置密码)。用cmd ssh链接ssh -p 60001 <u…...

微服务-java spi 与 dubbo spi
Java SPI 通过一个案例来看SPI public interface DemoSPI {void echo(); } public class FirstImpl implements DemoSPI{Overridepublic void echo() {System.out.println("first echo");} } public class SecondImpl implements DemoSPI{Overridepublic void ech…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...