用通俗易懂的方式讲解:使用 Mistral-7B 和 Langchain 搭建基于PDF文件的聊天机器人
在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。
一、LangChain简介
LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-shot示例的LLM来提供相关响应和推理。LangChain擅长文档问答、聊天机器人、分析结构化数据等。LangChain提供方便处理LLM的抽象组件及其实现,还为更高级别的任务提供组件Chain。
安装langchain:
pip install langchain
LangChain中的模块:Model I/O(模型I/O), Retrieval(检索), Chains(链), Agents(代理), Memory(记忆), Callbacks(回调)
1.1 模型I/O模块
模型I/O是应用程序的核心元素。使用LangChain,可以使用任何大语言模型。这个接口需要三个组件:大语言模型、提示和输出解析器。
LangChain提供了许多类和函数来构建提示,为各种任务提供现成的**提示模板,**也可以自定义提示模板。
LangChain可以使用LLM,也可以使用以聊天消息列表为输入并返回聊天聊天消息。它可以与许多LLM一起工作,包括OpenAI LLMs和开源LLM。
输出解析器用于构建从LLM接收的响应,PydanticOutputParser是LangChain中输出解析器的主要类型。
1.2 检索模块
检索模块实现了检索增强生成(RAG),可以访问大模型训练数据之外的用户私有数据。检索步骤包括以下几步:加载数据、转换数据、创建或获取嵌入、存储嵌入和检索嵌入。LangChain拥有大约100个文档加载器,可以读取主要的文档格式,比如CSV、HTML、pdf、代码等。它可以使用不同的算法转换数据。LangChain集成了超过25个嵌入模型和超过50家向量数据库。
1.3 链条模块
复杂的应用程序通常需要组合多个LLM来完成。LangChain提供了Chain功能,可以集成多个LLM,Chain也可以调用其他Chain。
1.4 代理模块
代理也是一种Chain,负责决定下一步动作。代理由一个语言模型和一个提示组成,它需要以下输入:可用工具列表、用户输入和历史执行信息(如果有的话)。代理cals的功能被称为“工具”。代理使用LLM来决定要采取的操作和顺序。操作包括——使用工具,观察工具的输出,向用户返回响应。
1.5 记忆模块
记忆模块使系统能够记住过去的信息,这在对话机器人中非常重要。
1.6 回调模块
回调机制允许用户使用API的“回调”参数返回LLM应用程序不同阶段的信息,比如用于日志记录、监控、流式传输等。
二、Mistral-7B
Mistral-7B是一个强大的语言模型(目前是开源的),具有73亿个参数,性能优于很多参数量更高的大模型。它可以下载以供离线使用,也可以在云中使用或从HuggingFace下载。使用langchain中的HuggingFaceHub,可以使用以下代码加载并使用Mistral-7B:
repo_id = "mistralai/Mistral-7B-v0.1"
llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here', repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
三、HuggingFace Embedding
在处理文本、图像、音频、视频、文档等数据时,通常首先会进行embedding把他们表示成数字类型,这样便于神经网络处理,embedding不仅仅是一种数字表示,它也可以捕捉数据的上下文语义信息。
HuggingFace提供了Sentence Transformers模型可以进行embedding,安装如下所示:
pip install -U sentence-transformers
然后使用它加载一个预先训练好的模型来对文本句子进行编码。
四、chroma向量存储
chroma是一个开源的嵌入数据库(矢量存储),用于创建、存储、检索和进行嵌入的语义搜索。安装如下:
pip install chroma
它允许用户连接到chroma客户端,创建一个集合,将带有元数据和id的文档添加到集合(此步骤创建嵌入),然后查询此集合(语义检索)。
五、pypdf 库
pypdf库可以读取、拆分、合并、裁剪、转换pdf文件的页面,添加自定义数据,更改查看选项,为pdf文件添加密码,从pdf文件中检索文本和元数据。安装如下所示:
pip install pypdf
要将pypdf与AES加密或解密一起使用,请安装额外的依赖项:
pip install pypdf[crypto]
六、实现代码
# Install dependencies
!pip install huggingface_hub
!pip install chromadb
!pip install langchain
!pip install pypdf
!pip install sentence-transformers
# import required libraries
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFaceHub
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
# Load the pdf file and split it into smaller chunks
loader = PyPDFLoader('report.pdf')
documents = loader.load()# Split the documents into smaller chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# We will use HuggingFace embeddings
embeddings = HuggingFaceEmbeddings()
#Using Chroma vector database to store and retrieve embeddings of our text
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever(search_kwargs={'k': 2})
# We are using Mistral-7B for this question answering
repo_id = "mistralai/Mistral-7B-v0.1"
llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here', repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
# Create the Conversational Retrieval Chain
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever,return_source_documents=True)
#We will run an infinite loop to ask questions to LLM and retrieve answers untill the user wants to quit
import sys
chat_history = []
while True:query = input('Prompt: ')#To exit: use 'exit', 'quit', 'q', or Ctrl-D.",if query.lower() in ["exit", "quit", "q"]:print('Exiting')sys.exit()result = qa_chain({'question': query, 'chat_history': chat_history})print('Answer: ' + result['answer'] + '\n')chat_history.append((query, result['answer']))
至此,基于PDF的聊天机器人就搭建好了,你可以从一个长而难的pdf中回答你的所有问题。Just do it!
通俗易懂讲解大模型系列
-
用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!
-
用通俗易懂的方式讲解:结合检索和重排序模型,改善大模型 RAG 效果明显
-
用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了
-
用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型
-
用通俗易懂的方式讲解:ChatGLM3-6B 功能原理解析
-
用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案
-
用通俗易懂的方式讲解:一个强大的 LLM 微调工具 LLaMA Factory
-
用通俗易懂的方式讲解:ChatGLM3-6B 部署指南
-
用通俗易懂的方式讲解:LangChain Agent 原理解析
-
用通俗易懂的方式讲解:HugggingFace 推理 API、推理端点和推理空间使用详解
-
用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了
-
用通俗易懂的方式讲解:使用 FastChat 部署 LLM 的体验太爽了
-
用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统
-
用通俗易懂的方式讲解:使用 Docker 部署大模型的训练环境
-
用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境
-
用通俗易懂的方式讲解:Llama2 部署讲解及试用方式
-
用通俗易懂的方式讲解:LangChain 知识库检索常见问题及解决方案
-
用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统
-
用通俗易懂的方式讲解:代码大模型盘点及优劣分析
-
用通俗易懂的方式讲解:Prompt 提示词在开发中的使用
-
用通俗易懂的方式讲解:万字长文带你入门大模型
技术交流
建了AIGC大模型技术交流群! 想要学习、技术交流、获取如下原版资料的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:来自CSDN + 技术交流
参考文献:
[1] https://medium.com/@nimritakoul01/chat-with-your-pdf-files-using-mistral-7b-and-langchain-f3be9363301c
[2] https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fmedium.com%2F%40woyera%2Fhow-to-chat-with-your-pdf-using-python-llama-2-41df80c4e674
[3] https://www.shakudo.io/blog/build-pdf-bot-open-source-llms
相关文章:

用通俗易懂的方式讲解:使用 Mistral-7B 和 Langchain 搭建基于PDF文件的聊天机器人
在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。 一、LangChain简介 LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few…...

综合智慧能源监测管理平台,实现能源管理“透明”化
能源问题是全球面临的最大问题,在提高经济增长的同时,也引发了能源供应危机及环境严重等问题,降低能源管理、低碳环保是我们未来发展的必经之路。 为了解决这一问题,智慧能源管理平台应运而生。平台采用微服务架构,整…...

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步
【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图 【大数据进阶第三阶段之Datax学习笔记】使用…...
kotlin chunked 和 windowed
kotlin chunked的作用 将集合按照指定的数量分割成多个结合 val numbers listOf(0,1,2,3,4,5,6,7,8,9) //把集合按照一个结合3个元素分割 Log.d("chunked", numbers.chunked(3).toString()) // 打印结果 [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] kotlin windowed…...

C语言光速入门笔记
C语言是一门面向过程的编译型语言,它的运行速度极快,仅次于汇编语言。C语言是计算机产业的核心语言,操作系统、硬件驱动、关键组件、数据库等都离不开C语言;不学习C语言,就不能了解计算机底层。 目录 C语言介绍C语言特…...

Flutter+Go_Router+Fluent_Ui仿阿里网盘桌面软件开发跨平台实战-买就送仿小米app开发
Flutter是谷歌公司开发的一款开源、免费的UI框架,可以让我们快速的在Android和iOS上构建高质量App。它最大的特点就是跨平台、以及高性能。 目前 Flutter 已经支持 iOS、Android、Web、Windows、macOS、Linux 的跨平台开发。 Flutter官方介绍,目前Flutte…...

内联函数的作用
目的 主要为了提升程序运行速度。 分析 当程序调用一个函数时,程序暂停执行当前指令,跳到函数体处执行,在函数执行完后,返回原来的位置继续执行。如果该函数为内联函数,则不需跳,是因为该内联函数直接插…...

Simpy简介:python仿真模拟库-02/5
一、说明 关于python下的仿真库,本篇为第二部分,是更进一步的物理模型讲解,由于这部分内容强依赖于第一部分的符号介绍,因此,有以下建议: 此文为第二部分,若看第一部分。建议查看本系列的第一部…...
Kafka高级应用:如何配置处理MQ百万级消息队列?
在大数据时代,Apache Kafka作为一款高性能的分布式消息队列系统,广泛应用于处理大规模数据流。本文将深入探讨在Kafka环境中处理百万级消息队列的高级应用技巧。 本文,已收录于,我的技术网站 ddkk.com,有大厂完整面经…...

LIN总线学习笔记(1)-总线传输规范
关注菲益科公众号—>对话窗口发送 “CANoe ”或“INCA”,即可获得canoe入门到精通电子书和INCA软件安装包(不带授权码)下载地址。 接触LIN是从最近负责项目中开始的。项目已经快要量产了,因为中间遇到的大大小小的问题…...

Qt界面篇:Qt停靠控件QDockWidget、树控件QTreeWidget及属性控件QtTreePropertyBrowser的使用
1、功能介绍 本篇主要使用Qt停靠控件QDockWidget、树控件QTreeWidget及Qt属性控件QtTreePropertyBrowser来搭建一个简单实用的主界面布局。效果如下所示。 2、控件使用详解 2.1 停靠控件QDockWidget QDockWidget可以停靠在 QMainWindow 内或作为桌面上的顶级窗口浮动。默认值…...

H266/VVC网络适配层概述
视频编码标准的分层结构 视频数据分层的必要性:网络类型的多样性、不同的应用场景对视频有不同的需求。 编码标准的分层结构:为了适应不同网络和应用需求,视频编码数据根据其内容特性被分成若干NAL单元(NAL Unit,NALU…...

new FormData 同时发送表单 json 以及文件二进制流
需要新增时同时发送表单 json 以及对应的文件即可使用以下方法传参 let formDataParams new FormData(); 首先通过 new FormData() 创建你需要最后发送的表单 接着将你的对象 json 存储,注意使用 new Blob 创建大表单转换成 json 格式。以…...

计算机环境安全
操作系统安全----比如windows,linux 安全标识--实体唯一性 windows---主体:账户,计算机,服务 安全标识符SID-Security Identifier 普通用户SID是1000,管理用SID是500 linux---主体:用户,用户组…...
Activiti7工作流引擎:多租户
一:多租户 表示每个租户之间数据隔离互不影响,互不可见。通常一个租户表示一个系统应用(类似于appid的作用)或者一家公司。 通过数据库级别进行隔离,每个租户对应一个数据库;通过表记录级别进行隔离&…...

Postman实现压力测试
从事软件开发对于压力测试并不陌生,常见的一些压测软件有Apache JMeter LoadRunner Gatling Tsung 等,这些都是一些比较专业的测试软件,对于我的工作来说一般情况下用不到这么专业的测试,有时候需要对一些接口进行压力测试又不想再安装新软件,那么可以使用Postman来实现对…...

爬虫工具(tkinter+scrapy+pyinstaller)
需求介绍输入:关键字文件,每一行数据为一爬取单元。若一行存在多个and关系的关键字 ,则用|隔开处理:爬取访问6个网站的推送,获取推送内容的标题,发布时间,来源,正文第一段࿰…...
MySQL常用sql语句记录
1,创建用户及赋权 -- 创建用户 CREATE USER usernamelocalhost IDENTIFIED BY password;-- 赋予所有权限 GRANT ALL PRIVILEGES ON database_name.* TO usernamelocalhost;-- 赋予特定表的某些权限 GRANT SELECT, INSERT ON table_name TO usernamelocalhost;-- 更…...
2024.1.4力扣每日一题——被列覆盖的最多行数
2024.1.4 题目来源我的题解方法一 回溯位运算优化 题目来源 力扣每日一题;题序:2397 我的题解 方法一 回溯位运算优化 这道题一看就会想到使用回溯法,但是采用回溯法后如何判断有多少行被覆盖,直接计算矩阵时间复杂度较高&…...

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (一)
本实践教程将教你如何使用 Elasticsearch 构建完整的搜索解决方案。 在本教程中你将学习: 如何对数据集执行全文关键字搜索(可选使用过滤器)如何使用机器学习模型生成、存储和搜索密集向量嵌入如何使用 ELSER 模型生成和搜索稀疏向量如何使用…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...