当前位置: 首页 > news >正文

机器学习 -决策树的案例

场景

我们对决策树的基本概念和算法其实已经有过了解,那我们如何利用决策树解决问题呢?

构建决策树

数据准备

我们准备了一些数据如下:

# 定义新的数据集
new_dataSet = [['晴朗', '是', '高', '是'],['雨天', '否', '低', '否'],['阴天', '是', '中', '是'],['晴朗', '否', '高', '是'],['晴朗', '是', '低', '否'],['雨天', '是', '高', '否'],['阴天', '否', '中', '是'],['晴朗', '否', '低', '否']
]

这些数据分别是天气,是否闷热,风速和是否出门郊游。
现在要解决的问题是“基于当前的天气和其他条件,我们是否应该进行户外活动?

构建决策树

我们先检查这个数据集类别是否相同:

 classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]

很显然,数据集类别不同,那么我们需要检查是否还有特征可分:如果说,只有类别特征的话,我们选择多数:

 if len(dataSet[0]) == 1:return majorityCnt(classList)

def majorityCnt(classList):classCount = {}  # 创建一个空字典,用于存储每个元素及其出现次数# 遍历传入的列表for vote in classList:# 如果元素不在字典中,将其加入字典并初始化计数为0if vote not in classCount.keys():classCount[vote] = 0# 对于列表中的每个元素,增加其在字典中的计数classCount[vote] += 1# 对字典进行排序。这里使用sorted()函数,以字典的值(即元素的计数)作为排序依据。# key=operator.itemgetter(1)指定按照字典的值(第二个元素)来排序。# reverse=True表示降序排序,即出现次数最多的元素会排在最前面。sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)# 返回出现次数最多的元素。sortedClassCount[0]表示排序后的第一个元素(即出现次数最多的元素),# 而sortedClassCount[0][0]则是该元素本身。return sortedClassCount[0][0]

显然我们除了类别特征还有其他特征,我们选择最佳特征进行分割,所谓最佳特征,就是说有最高的信息增益的特征,信息增益的解释在上一节中有:
传送门:机器学习-决策树
最佳特征的索引是 2,对应于我们数据集中的 ‘风速’ 特征。这意味着在当前数据集中,'风速’在划分数据集时能提供最大的信息增益。OK

def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1      # 计算特征的数量(减去最后一列标签)baseEntropy = calcShannonEnt(dataSet)  # 计算数据集当前的熵bestInfoGain = 0.0  # 初始化最佳信息增益bestFeature = -1    # 初始化最佳特征的索引for i in range(numFeatures):  # 遍历所有特征featList = [example[i] for example in dataSet]  # 提取当前特征列的所有值uniqueVals = set(featList)  # 获取当前特征的唯一值集合newEntropy = 0.0  # 初始化新熵for value in uniqueVals:  # 遍历当前特征的每个唯一值subDataSet = splitDataSet(dataSet, i, value)  # 根据当前特征和值分割数据集prob = len(subDataSet) / float(len(dataSet))  # 计算子数据集的比例newEntropy += prob * calcShannonEnt(subDataSet)  # 计算新熵,并累加infoGain = baseEntropy - newEntropy  # 计算信息增益if abs(infoGain) > abs(bestInfoGain):bestInfoGain = infoGain  # 更新最佳信息增益bestFeature = i  # 更新最佳特征索引return bestFeature  # 返回最佳特征的索引

下一步是使用这个特征来分割数据集,并递归地创建决策树。我们将对这个特征的每个唯一值进行分割,并在每个子集上重复此过程。这将形成决策树的不同分支。让我们开始构建决策树。

	bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}del(labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labelsmyTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)

如果一个特征有多个唯一值,那么 uniqueVals 将包含这些值,决策树的每个分支将对应这些值之一。
通过这些步骤,决策树逐渐在数据集的特征上进行分割,直到所有的数据都被正确分类或没有更多的特征可以用来进一步分割。

最终的决策树应该长这样:

{'其他条件2': {'低': '否', '中': '是', '高': {'天气': {'晴朗': '是', '雨天': '否'}}}
}

完整可执行代码

完整的代码如下:


# 计算熵
def calcShannonEnt(dataSet):# 统计实例总数numEntries = len(dataSet)# 字典标签,统计标签出现的次数labelCounts = {}for data in dataSet:# 每个实例的最后一个元素是标签元素currentLabel = data[-1]if currentLabel not in labelCounts:labelCounts[currentLabel] = 0# 为当前类别标签的计数加一labelCounts[currentLabel] += 1# 设置初始熵shannonEnt = 0.0  # 初始化熵为0for key in labelCounts:prob = float(labelCounts[key]) / numEntries  # 计算每个类别标签的出现概率shannonEnt -= prob * log(prob, 2)  # 使用香农熵公式计算并累加熵return shannonEnt  # 返回计算得到的熵def majorityCnt(classList):classCount = {}  # 创建一个空字典,用于存储每个元素及其出现次数# 遍历传入的列表for vote in classList:# 如果元素不在字典中,将其加入字典并初始化计数为0if vote not in classCount.keys():classCount[vote] = 0# 对于列表中的每个元素,增加其在字典中的计数classCount[vote] += 1# 对字典进行排序。这里使用sorted()函数,以字典的值(即元素的计数)作为排序依据。# key=operator.itemgetter(1)指定按照字典的值(第二个元素)来排序。# reverse=True表示降序排序,即出现次数最多的元素会排在最前面。sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)# 返回出现次数最多的元素。sortedClassCount[0]表示排序后的第一个元素(即出现次数最多的元素),# 而sortedClassCount[0][0]则是该元素本身。return sortedClassCount[0][0]def splitDataSet(dataSet, axis, value):retDataSet = []  # 创建一个新的列表用于存放分割后的数据集for featVec in dataSet:  # 遍历数据集中的每个样本if featVec[axis] == value:  # 检查当前样本在指定特征轴上的值是否等于给定的值reducedFeatVec = featVec[:axis]  # 截取当前样本直到指定特征轴的部分reducedFeatVec.extend(featVec[axis+1:])  # 将指定特征轴之后的部分添加到截取的列表中retDataSet.append(reducedFeatVec)  # 将处理后的样本添加到分割后的数据集列表中return retDataSet  # 返回分割后的数据集def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1      # 计算特征的数量(减去最后一列标签)baseEntropy = calcShannonEnt(dataSet)  # 计算数据集当前的熵bestInfoGain = 0.0  # 初始化最佳信息增益bestFeature = -1    # 初始化最佳特征的索引for i in range(numFeatures):  # 遍历所有特征featList = [example[i] for example in dataSet]  # 提取当前特征列的所有值uniqueVals = set(featList)  # 获取当前特征的唯一值集合newEntropy = 0.0  # 初始化新熵for value in uniqueVals:  # 遍历当前特征的每个唯一值subDataSet = splitDataSet(dataSet, i, value)  # 根据当前特征和值分割数据集prob = len(subDataSet) / float(len(dataSet))  # 计算子数据集的比例newEntropy += prob * calcShannonEnt(subDataSet)  # 计算新熵,并累加infoGain = baseEntropy - newEntropy  # 计算信息增益if abs(infoGain) > abs(bestInfoGain):bestInfoGain = infoGain  # 更新最佳信息增益bestFeature = i  # 更新最佳特征索引return bestFeature  # 返回最佳特征的索引def createTree(dataSet,labels):classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]#stop splitting when all of the classes are equalif len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSetreturn majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}del(labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labelsmyTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)return myTree

这是完整的代码,可以试着玩一下,可玩性还是ok的。

结束

决策树的案例到此结束,事实上和IF比较相似。

相关文章:

机器学习 -决策树的案例

场景 我们对决策树的基本概念和算法其实已经有过了解,那我们如何利用决策树解决问题呢? 构建决策树 数据准备 我们准备了一些数据如下: # 定义新的数据集 new_dataSet [[晴朗, 是, 高, 是],[雨天, 否, 低, 否],[阴天, 是, 中, 是],[晴朗…...

04、Kafka ------ 各个功能的作用解释(Cluster、集群、Broker、位移主题、复制因子、领导者副本、主题)

目录 启动命令:CMAK的用法★ 在CMAK中添加 Cluster★ 在CMAK中查看指定集群★ 在CMAK中查看 Broker★ 位移主题★ 复制因子★ 领导者副本和追随者副本★ 查看主题 启动命令: 1、启动 zookeeper 服务器端 小黑窗输入命令: zkServer 2、启动 …...

1、C语言:数据类型/运算符与表达式

数据类型/运算符/表达式 1.数据类型与长度2.常量3.声明4. 运算符5. 表达式 1.数据类型与长度 基本数据类型 类型说明char字符型,占用一个字节,可以存放本地字符集中的一个字符int整型,通常反映了所有机器中整数的最自然长度float单精度浮点…...

[ffmpeg系列 03] 文件、流地址(视频)解码为YUV

一 代码 ffmpeg版本5.1.2,dll是:ffmpeg-5.1.2-full_build-shared。x64的。 文件、流地址对使用者来说是一样。 流地址(RTMP、HTTP-FLV、RTSP等):信令完成后,才进行音视频传输。信令包括音视频格式、参数等协商。 接流的在实际…...

python算法每日一练:连续子数组的最大和

这是一道关于动态规划的算法题: 题目描述: 给定一个整数数组 nums,请找出该数组中连续子数组的最大和,并返回这个最大和。 示例: 输入:[-2, 1, -3, 4, -1, 2, 1, -5, 4] 输出:6 解释&#xff…...

一个vue3的tree组件

https://download.csdn.net/download/weixin_41012767/88709466...

新手练习项目 4:简易2048游戏的实现(C++)

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder) 目录 一、效果图二、代码(带注释)三、说明 一、效果图 二、代码(带…...

2023年度总结:技术沉淀、持续学习

2023年度总结:技术沉淀、持续学习 一、引言 今年是我毕业的第二个年头,也是完整的一年,到了做年终总结的时候了 这一年谈了女朋友,学习了不少技术,是充实且美好的一年! 首先先看年初定的小目标&#xf…...

Unity 利用UGUI之Slider制作进度条

在Unity中使用Slider和Text组件可以制作简单的进度条。 首先在场景中右键->UI->Slider,新建一个Slider组件: 同样方法新建一个Text组件,最终如图: 创建一个进度模拟脚本,Slider_Progressbar.cs using System.C…...

OCS2 入门教程(四)- 机器人示例

系列文章目录 前言 OCS2 包含多个机器人示例。我们在此简要讨论每个示例的主要特点。 System State Dim. Input Dim. Constrained Caching Double Integrator 2 1 No No Cartpole 4 1 Yes No Ballbot 10 3 No No Quadrotor 12 4 No No Mobile Manipul…...

FreeRTOS学习第6篇–任务状态挂起恢复删除等操作

目录 FreeRTOS学习第6篇--任务状态挂起恢复删除等操作任务的状态设计实验IRReceiver_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第6篇–任务状态挂起恢复删除等操作 本文目标:学习与使用FreeRTOS中的几项操作,有挂起恢复删除等操作…...

BLE Mesh蓝牙组网技术详细解析之Access Layer访问层(六)

目录 一、什么是BLE Mesh Access Layer访问层? 二、Access payload 2.1 Opcode 三、Access layer behavior 3.1 Access layer发送消息的流程 3.2 Access layer接收消息的流程 3.3 Unacknowledged and acknowledged messages 3.3.1 Unacknowledged message …...

Netlink 通信机制

文章目录 前言一、Netlink 介绍二、示例代码参考资料 前言 一、Netlink 介绍 Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口。 在Linux 内核中,使用netlink 进行应用与内核通信的应用有…...

2024.1.8每日一题

LeetCode 回旋镖的数量 447. 回旋镖的数量 - 力扣(LeetCode) 题目描述 给定平面上 n 对 互不相同 的点 points ,其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和 j 之间的距离和 i 和 k 之间的欧式…...

看了致远OA的表单设计后的思考

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/n…...

mmdetection训练自己的数据集

mmdetection训练自己的数据集 这里写目录标题 mmdetection训练自己的数据集一: 环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码 三: 训练dataset数据文件配置config…...

MySQL取出N列里最大or最小的一个数据

如题,现在有3列,都是数字类型,要取出这3列里最大或最小的的一个数字 -- N列取最小 SELECT LEAST(temperature_a,temperature_b,temperature_c) min FROM infrared_heat-- N列取最大 SELECT GREATEST(temperature_a,temperature_b,temperat…...

编写.NET的Dockerfile文件构建镜像

创建一个WebApi项目,并且创建一个Dockerfile空文件,添加以下代码,7.0代表的你项目使用的SDK的版本,构建的时候也需要选择好指定的镜像tag FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base WORKDIR /app EXPOSE 80 EXPOSE 443F…...

【C语言】浙大版C语言程序设计(第三版) 练习7-4 找出不是两个数组共有的元素

前言 最近在学习浙大版的《C语言程序设计》(第三版)教材,同步在PTA平台上做对应的练习题。这道练习题花了比较长的时间,于是就写篇博文记录一下我的算法和代码。 2024.01.03 题目 练习7-4 找出不是两个数组共有的元素 作者 张彤…...

7.27 SpringBoot项目实战 之 整合Swagger

文章目录 前言一、Maven依赖二、编写Swagger配置类三、编写接口配置3.1 控制器Controller 配置描述3.2 接口API 配置描述3.3 参数配置描述3.4 忽略API四、全局参数配置五、启用增强功能六、调试前言 在我们实现了那么多API以后,进入前后端联调阶段,需要给前端同学提供接口文…...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...