当前位置: 首页 > news >正文

Python综合数据分析_RFM用户分层模型

文章目录

  • 1.数据加载
  • 2.查看数据情况
  • 3.数据合并及填充
  • 4.查看特征字段之间相关性
  • 5.聚合操作
  • 6.时间维度上看销售额
  • 7.计算用户RFM
  • 8.数据保存存储
    • (1).to_csv
    • (1).to_pickle


1.数据加载

import pandas as pd
dataset = pd.read_csv('SupplyChain.csv', encoding='unicode_escape')
dataset

在这里插入图片描述

2.查看数据情况

print(dataset.shape)
print(dataset.isnull().sum())

在这里插入图片描述

在这里插入图片描述

3.数据合并及填充

print(dataset[['Customer Fname', 'Customer Lname']])
#  fistname与lastname进行合并
dataset['Customer Full Name'] = dataset['Customer Fname'] +dataset['Customer Lname']
#dataset.head()
dataset['Customer Zipcode'].value_counts()
# 查看缺失值,发现有3个缺失值
print(dataset['Customer Zipcode'].isnull().sum())

在这里插入图片描述

dataset['Customer Zipcode'] = dataset['Customer Zipcode'].fillna(0)
dataset.head()

在这里插入图片描述

4.查看特征字段之间相关性

import matplotlib.pyplot as plt
import seaborn as sns
# 特征字段之间相关性 热力图
data = dataset
plt.figure(figsize=(20,10))
# annot=True 显示具体数字
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
# 结论:可以观察到Product Price和Sales,Order Item Total有很高的相关性

在这里插入图片描述

5.聚合操作

# 基于Market进行聚合
market = data.groupby('Market')
# 基于Region进行聚合
region = data.groupby('Order Region')
plt.figure(1)
market['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Sales in different markets')
plt.figure(2)
region['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Sales in different regions')
plt.show()

在这里插入图片描述
在这里插入图片描述

# 基于Category Name进行聚类
cat = data.groupby('Category Name')
plt.figure(1)
# 不同类别的 总销售额
cat['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Total sales')
plt.figure(2)
# 不同类别的 平均销售额
cat['Sales per customer'].mean().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Total sales')
plt.show()

在这里插入图片描述

在这里插入图片描述

6.时间维度上看销售额

#data['order date (DateOrders)']
# 创建时间戳索引
temp = pd.DatetimeIndex(data['order date (DateOrders)'])
temp

在这里插入图片描述

# 取order date (DateOrders)字段中的year, month, weekday, hour, month_year
data['order_year'] = temp.year
data['order_month'] = temp.month
data['order_week_day'] = temp.weekday
data['order_hour'] = temp.hour
data['order_month_year'] = temp.to_period('M')
data.head()

在这里插入图片描述

# 对销售额进行探索,按照不同时间维度 年,星期,小时,月
plt.figure(figsize=(10, 12))
plt.subplot(4, 2, 1)
df_year = data.groupby('order_year')
df_year['Sales'].mean().plot(figsize=(12, 12), title='Average sales in years')
plt.subplot(4, 2, 2)
df_day = data.groupby('order_week_day')
df_day['Sales'].mean().plot(figsize=(12, 12), title='Average sales in days per week')
plt.subplot(4, 2, 3)
df_hour = data.groupby('order_hour')
df_hour['Sales'].mean().plot(figsize=(12, 12), title='Average sales in hours per day')
plt.subplot(4, 2, 4)
df_month = data.groupby('order_month')
df_month['Sales'].mean().plot(figsize=(12, 12), title='Average sales in month per year')
plt.tight_layout()
plt.show()

在这里插入图片描述

# 探索商品价格与 销售额之间的关系
data.plot(x='Product Price', y='Sales per customer') 
plt.title('Relationship between Product Price and Sales per customer')
plt.xlabel('Product Price')
plt.ylabel('Sales per customer')
plt.show()

在这里插入图片描述

7.计算用户RFM

# # 用户分层 RFM
data['TotalPrice'] = data['Order Item Quantity'] * data['Order Item Total']
data[['TotalPrice', 'Order Item Quantity', 'Order Item Total']]

在这里插入图片描述

# 时间类型转换
data['order date (DateOrders)'] = pd.to_datetime(data['order date (DateOrders)'])
# 统计最后一笔订单的时间
data['order date (DateOrders)'].max()

在这里插入图片描述

# 假设我们现在是2018-2-1
import datetime
present = datetime.datetime(2018,2,1)
# 计算每个用户的RFM指标
# 按照Order Customer Id进行聚合,
customer_seg = data.groupby('Order Customer Id').agg({'order date (DateOrders)': lambda x: (present-x.max()).days,                                                       'Order Id': lambda x:len(x), 'TotalPrice': lambda x: x.sum()})
customer_seg

在这里插入图片描述

# 将字段名称改成 R,F,M
customer_seg.rename(columns={'order date (DateOrders)': 'R_Value', 'Order Id': 'F_Value', 'TotalPrice': 'M_Value'}, inplace=True)
customer_seg.head()

在这里插入图片描述

# 将RFM数据划分为4个尺度
quantiles = customer_seg.quantile(q=[0.25, 0.5, 0.75])
quantiles = quantiles.to_dict()
quantiles

在这里插入图片描述

# R_Value越小越好 => R_Score就越大
def R_Score(a, b, c):if a <= c[b][0.25]:return 4elif a <= c[b][0.50]:return 3elif a <= c[b][0.75]:return 2else:return 1# F_Value, M_Value越大越好
def FM_Score(a, b, c):if a <= c[b][0.25]:return 1elif a <= c[b][0.50]:return 2elif a <= c[b][0.75]:return 3else:return 4
# 新建R_Score字段,用于将R_Value => [1,4]
customer_seg['R_Score']  = customer_seg['R_Value'].apply(R_Score, args=("R_Value", quantiles))
# 新建F_Score字段,用于将F_Value => [1,4]
customer_seg['F_Score']  = customer_seg['F_Value'].apply(FM_Score, args=("F_Value", quantiles))
# 新建M_Score字段,用于将R_Value => [1,4]
customer_seg['M_Score']  = customer_seg['M_Value'].apply(FM_Score, args=("M_Value", quantiles))
customer_seg.head()

在这里插入图片描述

# 计算RFM用户分层
def RFM_User(df):if df['M_Score'] > 2 and df['F_Score'] > 2 and df['R_Score'] > 2:return '重要价值用户'if df['M_Score'] > 2 and df['F_Score'] <= 2 and df['R_Score'] > 2:return '重要发展用户'if df['M_Score'] > 2 and df['F_Score'] > 2 and df['R_Score'] <= 2:return '重要保持用户'if df['M_Score'] > 2 and df['F_Score'] <= 2 and df['R_Score'] <= 2:return '重要挽留用户'if df['M_Score'] <= 2 and df['F_Score'] > 2 and df['R_Score'] > 2:return '一般价值用户'if df['M_Score'] <= 2 and df['F_Score'] <= 2 and df['R_Score'] > 2:return '一般发展用户'if df['M_Score'] <= 2 and df['F_Score'] > 2 and df['R_Score'] <= 2:return '一般保持用户'if df['M_Score'] <= 2 and df['F_Score'] <= 2 and df['R_Score'] <= 2:return '一般挽留用户'
customer_seg['Customer_Segmentation'] = customer_seg.apply(RFM_User, axis=1)
customer_seg

在这里插入图片描述

8.数据保存存储

(1).to_csv

customer_seg.to_csv('supply_chain_rfm_result.csv', index=False)

(1).to_pickle

# 数据预处理后,将处理后的数据进行保存
data.to_pickle('data.pkl')


参考资料:开课吧

相关文章:

Python综合数据分析_RFM用户分层模型

文章目录 1.数据加载2.查看数据情况3.数据合并及填充4.查看特征字段之间相关性5.聚合操作6.时间维度上看销售额7.计算用户RFM8.数据保存存储(1).to_csv(1).to_pickle 1.数据加载 import pandas as pd dataset pd.read_csv(SupplyChain.csv, encodingunicode_escape) dataset2…...

【C++进阶04】STL中map、set、multimap、multiset的介绍及使用

一、关联式容器 vector/list/deque… 这些容器统称为序列式容器 因为其底层为线性序列的数据结构 里面存储的是元素本身 map/set… 这些容器统称为关联式容器 关联式容器也是用来存储数据的 与序列式容器不同的是 其里面存储的是<key, value>结构的键值对 在数据检索时…...

在 Linux 中开启 Flask 项目持续运行

在 Linux 中开启 Flask 项目持续运行 在部署 Flask 项目时&#xff0c;情况往往并不是那么理想。默认情况下&#xff0c;关闭 SSH 终端后&#xff0c;Flask 服务就停止了。这时&#xff0c;您需要找到一种方法在 Linux 服务器上实现持续运行 Flask 项目&#xff0c;并在服务器…...

考研个人经验总结【心理向】

客官你好 首先&#xff0c;不管你是以何种原因来到这篇博客&#xff0c;以下内容或多或少可能带给你一些启发。如果你还是大二or大三学生&#xff0c;有考研的打算&#xff0c;不妨提前了解一些考研必备的心理战术&#xff0c;有时候并不是你知识学得不好&#xff0c;而是思维…...

如何在CentOS安装SQL Server数据库并通过内网穿透工具实现公网访问

文章目录 前言1. 安装sql server2. 局域网测试连接3. 安装cpolar内网穿透4. 将sqlserver映射到公网5. 公网远程连接6.固定连接公网地址7.使用固定公网地址连接 前言 简单几步实现在Linux centos环境下安装部署sql server数据库&#xff0c;并结合cpolar内网穿透工具&#xff0…...

jupyter内核错误

1、在dos窗口输入以下命令激活环境&#xff1a;anaconda activate 【py环境名&#xff0c;比如py37】&#xff08;目的是新家你一个虚拟环境&#xff09; 2、在虚拟环境py37下安装jupyter notebook&#xff0c;命令&#xff1a;pip install jupyter notebook 3、安装ipykerne…...

设计模式的艺术P1基础—2.3 类之间的关系

设计模式的艺术P1基础—2.3 类之间的关系 在软件系统中&#xff0c;类并不是孤立存在的&#xff0c;类与类之间存在各种关系。对于不同类型的关系&#xff0c;UML提供了不同的表示方式 1&#xff0e;关联关系 关联&#xff08;Association&#xff09;关系是类与类之间最常用…...

工业无人机行业研究:预计2025年将达到108.2亿美元

近年来&#xff0c;在技术进步和各行各业对无人驾驶飞行器 (UAV) 不断增长的需求的推动下&#xff0c;工业无人机市场一直在快速增长。该市场有望在未来几年继续其增长轨迹&#xff0c;许多关键趋势和因素推动其发展。 在全球范围内&#xff0c;工业无人机市场预计到 2025 年将…...

PCA主成分分析算法

在数据分析中&#xff0c;如果特征太多&#xff0c;或者特征之间的相关性太高&#xff0c;通常可以用PCA来进行降维。比如通过对原有10个特征的线性组合, 我们找出3个主成分&#xff0c;就足以解释绝大多数的方差&#xff0c;该算法在高维数据集中被广泛应用。 算法&#xff08…...

Hyperledger Fabric 权限策略和访问控制

访问控制是区块链网络十分重要的功能&#xff0c;负责控制某个身份在某个场景下是否允许采取某个操作&#xff08;如读写某个资源&#xff09;。 常见的访问控制模型包括强制访问控制&#xff08;Mandatory Access Control&#xff09;、自主访问控制&#xff08;Discretionar…...

Day28 回溯算法part04 93. 复原IP地址 78. 子集 90. 子集 II

回溯算法part04 93. 复原IP地址 78. 子集 90. 子集 II 93. 复原 IP 地址 class Solution { private:vector<string> result;bool isValid(string& s,int start,int end){if (start > end) return false;if (s[start] 0 && start ! end) { // 0开头的数…...

Linux系统常用的安全优化

环境&#xff1a;CentOS7.9 1、禁用SELinux SELinux是美国国家安全局对于强制访问控制的实现 1)永久禁用SELinux vim /etc/selinux/config SELINUXdisabled #必须重启系统才能生效2&#xff09;临时禁用SELInux getenforce #查看SELInux当前状态 setenforce 0 #数字…...

Vue-4、单向数据绑定与双向数据绑定

1、单向数据绑定 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>数据绑定</title><!--引入vue--><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/…...

【Flutter 开发实战】Dart 基础篇:常用运算符

在Dart中&#xff0c;运算符是编写任何程序的基本构建块之一。本文将详细介绍Dart中常用的运算符&#xff0c;以帮助初学者更好地理解和运用这些概念。 1. 算术运算符 算术运算符用于执行基本的数学运算。Dart支持常见的加、减、乘、除、整除以及取余运算。常见的算数运算符如…...

C++:ifstream通过getline读取文件会忽略最后一行空行

getline是读取文件的常用函数,虽然使用简单,但是有一个较容易被忽视的问题,就是文件最后一行空行会被忽略。 #include <iostream> #include <fstream> #include <string> using namespace std;void readWholeFileWithGetline(string fileName) {string t…...

力扣123. 买卖股票的最佳时机 III

动态规划 思路&#xff1a; 最多可以完成两笔交易&#xff0c;因此任意一天结束后&#xff0c;会处于5种状态&#xff1a; 未进行任何操作&#xff1b;只进行了一次买操作&#xff1b;进行了一次买操作和一次卖操作&#xff1b;再完成了一次交易之后&#xff0c;进行了一次买操…...

Vue3:vue-cli项目创建

一、node.js检测或安装&#xff1a; node -v node.js官方 二、vue-cli安装&#xff1a; npm install -g vue/cli # OR yarn global add vue/cli/*如果安装的时候报错&#xff0c;可以尝试一下方法 删除C:\Users**\AppData\Roaming下的npm和npm-cache文件夹 删除项目下的node…...

C# .Net学习笔记—— 异步和多线程(Task)

一、概念 Task是DotNet3.0之后所推出的一种新的使用多线程的方式&#xff0c;它是基于ThreadPool线程进行封装的。 二、使用多线程的时机 任务能够并发运行的时候&#xff0c;提升速度&#xff1b;优化体验 三、基本使用方法 private void button5_Click(object sender, Ev…...

Python从入门到网络爬虫(读写Excel详解)

前言 Python操作Excel的模块有很多&#xff0c;并且各有优劣&#xff0c;不同模块支持的操作和文件类型也有不同。最常用的Excel处理库有xlrd、xlwt、xlutils、xlwings、openpyxl、pandas&#xff0c;下面是各个模块的支持情况&#xff1a; 工具名称.xls.xlsx获取文件内容写入…...

Mysql之子查询、连接查询(内外)以及分页查询

目录 一.案例&#xff08;接上篇博客&#xff09; 09&#xff09;查询学过「张三」老师授课的同学的信息 10&#xff09;查询没有学全所有课程的同学的信息 11&#xff09;查询没学过"张三"老师讲授的任一门课程的学生姓名 12&#xff09;查询两门及其以上不及格课程…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...