Python综合数据分析_RFM用户分层模型
文章目录
- 1.数据加载
- 2.查看数据情况
- 3.数据合并及填充
- 4.查看特征字段之间相关性
- 5.聚合操作
- 6.时间维度上看销售额
- 7.计算用户RFM
- 8.数据保存存储
- (1).to_csv
- (1).to_pickle
1.数据加载
import pandas as pd
dataset = pd.read_csv('SupplyChain.csv', encoding='unicode_escape')
dataset
2.查看数据情况
print(dataset.shape)
print(dataset.isnull().sum())
3.数据合并及填充
print(dataset[['Customer Fname', 'Customer Lname']])
# fistname与lastname进行合并
dataset['Customer Full Name'] = dataset['Customer Fname'] +dataset['Customer Lname']
#dataset.head()
dataset['Customer Zipcode'].value_counts()
# 查看缺失值,发现有3个缺失值
print(dataset['Customer Zipcode'].isnull().sum())
dataset['Customer Zipcode'] = dataset['Customer Zipcode'].fillna(0)
dataset.head()
4.查看特征字段之间相关性
import matplotlib.pyplot as plt
import seaborn as sns
# 特征字段之间相关性 热力图
data = dataset
plt.figure(figsize=(20,10))
# annot=True 显示具体数字
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
# 结论:可以观察到Product Price和Sales,Order Item Total有很高的相关性
5.聚合操作
# 基于Market进行聚合
market = data.groupby('Market')
# 基于Region进行聚合
region = data.groupby('Order Region')
plt.figure(1)
market['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Sales in different markets')
plt.figure(2)
region['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Sales in different regions')
plt.show()
# 基于Category Name进行聚类
cat = data.groupby('Category Name')
plt.figure(1)
# 不同类别的 总销售额
cat['Sales per customer'].sum().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Total sales')
plt.figure(2)
# 不同类别的 平均销售额
cat['Sales per customer'].mean().sort_values(ascending=False).plot.bar(figsize=(12,6), title='Total sales')
plt.show()
6.时间维度上看销售额
#data['order date (DateOrders)']
# 创建时间戳索引
temp = pd.DatetimeIndex(data['order date (DateOrders)'])
temp
# 取order date (DateOrders)字段中的year, month, weekday, hour, month_year
data['order_year'] = temp.year
data['order_month'] = temp.month
data['order_week_day'] = temp.weekday
data['order_hour'] = temp.hour
data['order_month_year'] = temp.to_period('M')
data.head()
# 对销售额进行探索,按照不同时间维度 年,星期,小时,月
plt.figure(figsize=(10, 12))
plt.subplot(4, 2, 1)
df_year = data.groupby('order_year')
df_year['Sales'].mean().plot(figsize=(12, 12), title='Average sales in years')
plt.subplot(4, 2, 2)
df_day = data.groupby('order_week_day')
df_day['Sales'].mean().plot(figsize=(12, 12), title='Average sales in days per week')
plt.subplot(4, 2, 3)
df_hour = data.groupby('order_hour')
df_hour['Sales'].mean().plot(figsize=(12, 12), title='Average sales in hours per day')
plt.subplot(4, 2, 4)
df_month = data.groupby('order_month')
df_month['Sales'].mean().plot(figsize=(12, 12), title='Average sales in month per year')
plt.tight_layout()
plt.show()
# 探索商品价格与 销售额之间的关系
data.plot(x='Product Price', y='Sales per customer')
plt.title('Relationship between Product Price and Sales per customer')
plt.xlabel('Product Price')
plt.ylabel('Sales per customer')
plt.show()
7.计算用户RFM
# # 用户分层 RFM
data['TotalPrice'] = data['Order Item Quantity'] * data['Order Item Total']
data[['TotalPrice', 'Order Item Quantity', 'Order Item Total']]
# 时间类型转换
data['order date (DateOrders)'] = pd.to_datetime(data['order date (DateOrders)'])
# 统计最后一笔订单的时间
data['order date (DateOrders)'].max()
# 假设我们现在是2018-2-1
import datetime
present = datetime.datetime(2018,2,1)
# 计算每个用户的RFM指标
# 按照Order Customer Id进行聚合,
customer_seg = data.groupby('Order Customer Id').agg({'order date (DateOrders)': lambda x: (present-x.max()).days, 'Order Id': lambda x:len(x), 'TotalPrice': lambda x: x.sum()})
customer_seg
# 将字段名称改成 R,F,M
customer_seg.rename(columns={'order date (DateOrders)': 'R_Value', 'Order Id': 'F_Value', 'TotalPrice': 'M_Value'}, inplace=True)
customer_seg.head()
# 将RFM数据划分为4个尺度
quantiles = customer_seg.quantile(q=[0.25, 0.5, 0.75])
quantiles = quantiles.to_dict()
quantiles
# R_Value越小越好 => R_Score就越大
def R_Score(a, b, c):if a <= c[b][0.25]:return 4elif a <= c[b][0.50]:return 3elif a <= c[b][0.75]:return 2else:return 1# F_Value, M_Value越大越好
def FM_Score(a, b, c):if a <= c[b][0.25]:return 1elif a <= c[b][0.50]:return 2elif a <= c[b][0.75]:return 3else:return 4
# 新建R_Score字段,用于将R_Value => [1,4]
customer_seg['R_Score'] = customer_seg['R_Value'].apply(R_Score, args=("R_Value", quantiles))
# 新建F_Score字段,用于将F_Value => [1,4]
customer_seg['F_Score'] = customer_seg['F_Value'].apply(FM_Score, args=("F_Value", quantiles))
# 新建M_Score字段,用于将R_Value => [1,4]
customer_seg['M_Score'] = customer_seg['M_Value'].apply(FM_Score, args=("M_Value", quantiles))
customer_seg.head()
# 计算RFM用户分层
def RFM_User(df):if df['M_Score'] > 2 and df['F_Score'] > 2 and df['R_Score'] > 2:return '重要价值用户'if df['M_Score'] > 2 and df['F_Score'] <= 2 and df['R_Score'] > 2:return '重要发展用户'if df['M_Score'] > 2 and df['F_Score'] > 2 and df['R_Score'] <= 2:return '重要保持用户'if df['M_Score'] > 2 and df['F_Score'] <= 2 and df['R_Score'] <= 2:return '重要挽留用户'if df['M_Score'] <= 2 and df['F_Score'] > 2 and df['R_Score'] > 2:return '一般价值用户'if df['M_Score'] <= 2 and df['F_Score'] <= 2 and df['R_Score'] > 2:return '一般发展用户'if df['M_Score'] <= 2 and df['F_Score'] > 2 and df['R_Score'] <= 2:return '一般保持用户'if df['M_Score'] <= 2 and df['F_Score'] <= 2 and df['R_Score'] <= 2:return '一般挽留用户'
customer_seg['Customer_Segmentation'] = customer_seg.apply(RFM_User, axis=1)
customer_seg
8.数据保存存储
(1).to_csv
customer_seg.to_csv('supply_chain_rfm_result.csv', index=False)
(1).to_pickle
# 数据预处理后,将处理后的数据进行保存
data.to_pickle('data.pkl')
参考资料:开课吧
相关文章:

Python综合数据分析_RFM用户分层模型
文章目录 1.数据加载2.查看数据情况3.数据合并及填充4.查看特征字段之间相关性5.聚合操作6.时间维度上看销售额7.计算用户RFM8.数据保存存储(1).to_csv(1).to_pickle 1.数据加载 import pandas as pd dataset pd.read_csv(SupplyChain.csv, encodingunicode_escape) dataset2…...

【C++进阶04】STL中map、set、multimap、multiset的介绍及使用
一、关联式容器 vector/list/deque… 这些容器统称为序列式容器 因为其底层为线性序列的数据结构 里面存储的是元素本身 map/set… 这些容器统称为关联式容器 关联式容器也是用来存储数据的 与序列式容器不同的是 其里面存储的是<key, value>结构的键值对 在数据检索时…...

在 Linux 中开启 Flask 项目持续运行
在 Linux 中开启 Flask 项目持续运行 在部署 Flask 项目时,情况往往并不是那么理想。默认情况下,关闭 SSH 终端后,Flask 服务就停止了。这时,您需要找到一种方法在 Linux 服务器上实现持续运行 Flask 项目,并在服务器…...
考研个人经验总结【心理向】
客官你好 首先,不管你是以何种原因来到这篇博客,以下内容或多或少可能带给你一些启发。如果你还是大二or大三学生,有考研的打算,不妨提前了解一些考研必备的心理战术,有时候并不是你知识学得不好,而是思维…...

如何在CentOS安装SQL Server数据库并通过内网穿透工具实现公网访问
文章目录 前言1. 安装sql server2. 局域网测试连接3. 安装cpolar内网穿透4. 将sqlserver映射到公网5. 公网远程连接6.固定连接公网地址7.使用固定公网地址连接 前言 简单几步实现在Linux centos环境下安装部署sql server数据库,并结合cpolar内网穿透工具࿰…...

jupyter内核错误
1、在dos窗口输入以下命令激活环境:anaconda activate 【py环境名,比如py37】(目的是新家你一个虚拟环境) 2、在虚拟环境py37下安装jupyter notebook,命令:pip install jupyter notebook 3、安装ipykerne…...

设计模式的艺术P1基础—2.3 类之间的关系
设计模式的艺术P1基础—2.3 类之间的关系 在软件系统中,类并不是孤立存在的,类与类之间存在各种关系。对于不同类型的关系,UML提供了不同的表示方式 1.关联关系 关联(Association)关系是类与类之间最常用…...
工业无人机行业研究:预计2025年将达到108.2亿美元
近年来,在技术进步和各行各业对无人驾驶飞行器 (UAV) 不断增长的需求的推动下,工业无人机市场一直在快速增长。该市场有望在未来几年继续其增长轨迹,许多关键趋势和因素推动其发展。 在全球范围内,工业无人机市场预计到 2025 年将…...
PCA主成分分析算法
在数据分析中,如果特征太多,或者特征之间的相关性太高,通常可以用PCA来进行降维。比如通过对原有10个特征的线性组合, 我们找出3个主成分,就足以解释绝大多数的方差,该算法在高维数据集中被广泛应用。 算法(…...

Hyperledger Fabric 权限策略和访问控制
访问控制是区块链网络十分重要的功能,负责控制某个身份在某个场景下是否允许采取某个操作(如读写某个资源)。 常见的访问控制模型包括强制访问控制(Mandatory Access Control)、自主访问控制(Discretionar…...
Day28 回溯算法part04 93. 复原IP地址 78. 子集 90. 子集 II
回溯算法part04 93. 复原IP地址 78. 子集 90. 子集 II 93. 复原 IP 地址 class Solution { private:vector<string> result;bool isValid(string& s,int start,int end){if (start > end) return false;if (s[start] 0 && start ! end) { // 0开头的数…...
Linux系统常用的安全优化
环境:CentOS7.9 1、禁用SELinux SELinux是美国国家安全局对于强制访问控制的实现 1)永久禁用SELinux vim /etc/selinux/config SELINUXdisabled #必须重启系统才能生效2)临时禁用SELInux getenforce #查看SELInux当前状态 setenforce 0 #数字…...

Vue-4、单向数据绑定与双向数据绑定
1、单向数据绑定 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>数据绑定</title><!--引入vue--><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/…...

【Flutter 开发实战】Dart 基础篇:常用运算符
在Dart中,运算符是编写任何程序的基本构建块之一。本文将详细介绍Dart中常用的运算符,以帮助初学者更好地理解和运用这些概念。 1. 算术运算符 算术运算符用于执行基本的数学运算。Dart支持常见的加、减、乘、除、整除以及取余运算。常见的算数运算符如…...
C++:ifstream通过getline读取文件会忽略最后一行空行
getline是读取文件的常用函数,虽然使用简单,但是有一个较容易被忽视的问题,就是文件最后一行空行会被忽略。 #include <iostream> #include <fstream> #include <string> using namespace std;void readWholeFileWithGetline(string fileName) {string t…...
力扣123. 买卖股票的最佳时机 III
动态规划 思路: 最多可以完成两笔交易,因此任意一天结束后,会处于5种状态: 未进行任何操作;只进行了一次买操作;进行了一次买操作和一次卖操作;再完成了一次交易之后,进行了一次买操…...

Vue3:vue-cli项目创建
一、node.js检测或安装: node -v node.js官方 二、vue-cli安装: npm install -g vue/cli # OR yarn global add vue/cli/*如果安装的时候报错,可以尝试一下方法 删除C:\Users**\AppData\Roaming下的npm和npm-cache文件夹 删除项目下的node…...

C# .Net学习笔记—— 异步和多线程(Task)
一、概念 Task是DotNet3.0之后所推出的一种新的使用多线程的方式,它是基于ThreadPool线程进行封装的。 二、使用多线程的时机 任务能够并发运行的时候,提升速度;优化体验 三、基本使用方法 private void button5_Click(object sender, Ev…...

Python从入门到网络爬虫(读写Excel详解)
前言 Python操作Excel的模块有很多,并且各有优劣,不同模块支持的操作和文件类型也有不同。最常用的Excel处理库有xlrd、xlwt、xlutils、xlwings、openpyxl、pandas,下面是各个模块的支持情况: 工具名称.xls.xlsx获取文件内容写入…...

Mysql之子查询、连接查询(内外)以及分页查询
目录 一.案例(接上篇博客) 09)查询学过「张三」老师授课的同学的信息 10)查询没有学全所有课程的同学的信息 11)查询没学过"张三"老师讲授的任一门课程的学生姓名 12)查询两门及其以上不及格课程…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...