使用Scikit Learn 进行识别手写数字

使用Scikit Learn 进行识别手写数字
作者:i阿极
作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持
| 专栏案例:机器学习案例 |
|---|
| 机器学习(一):线性回归之最小二乘法 |
| 机器学习(二):线性回归之梯度下降法 |
| 机器学习(三):基于线性回归对波士顿房价预测 |
| 机器学习(四):基于KNN算法对鸢尾花类别进行分类预测 |
| 机器学习(五):基于KNN模型对高炉发电量进行回归预测分析 |
| 机器学习(六):基于高斯贝叶斯对面部皮肤进行预测分析 |
| 机器学习(七):基于多项式贝叶斯对蘑菇毒性分类预测分析 |
| 机器学习(八):基于PCA对人脸识别数据降维并建立KNN模型检验 |
| 机器学习(十四):基于逻辑回归对超市销售活动预测分析 |
| 机器学习(十五):基于神经网络对用户评论情感分析预测 |
| 机器学习(十六):线性回归分析女性身高与体重之间的关系 |
| 机器学习(十七):基于支持向量机(SVM)进行人脸识别预测 |
| 机器学习(十八):基于逻辑回归对优惠券使用情况预测分析 |
| 机器学习(十九):基于逻辑回归对某银行客户违约预测分析 |
| 机器学习(二十):LightGBM算法原理(附案例实战) |
| 机器学习(二十一):基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测 |
| 机器学习(二十二):基于逻辑回归(Logistic Regression)对股票客户流失预测分析 |
文章目录
- 使用Scikit Learn 进行识别手写数字
- 1、前言
- 2、导入库和数据集
- 3、打印一组图像的功能
- 4、使用数据集训练神经网络
- 5、用于训练和测试的数据分割
- 6、模型评估
1、前言
Scikit learn 是机器学习社区中使用最广泛的机器学习库之一,其背后的原因是代码的简便性以及机器学习开发人员构建机器学习模型所需的几乎所有功能的可用性。在本文中,我们将学习如何使用 sklearn 在手写数字数据集上训练 MLP 模型。其他一些好处是:
1、它提供分类、回归和聚类算法,例如SVM算法、随机森林、梯度提升和k 均值。
2、它还设计用于与Python 的科学和数值库NumPy和SciPy一起运行。
2、导入库和数据集
首先,让我们导入模型所需的库并加载数据集数字。
# importing the hand written digit dataset
from sklearn import datasets# digit contain the dataset
digits = datasets.load_digits()# dir function use to display the attributes of the dataset
dir(digits)
结果:
['DESCR', 'data', 'feature_names', 'frame', 'images', 'target', 'target_names']
3、打印一组图像的功能
将图片值输出为一系列数字
print(digits.images[0])

原始数字具有更高的分辨率,并且在为 scikit-learn 准备数据集时降低了分辨率,以便训练机器学习系统更轻松、更快地识别这些数字。因为在如此低的分辨率下,即使是人类也很难识别某些数字。输入照片的低质量也会限制我们在这些设置中的神经网络。
# importing the matplotlib libraries pyplot function
import matplotlib.pyplot as plt
# defining the function plot_multidef plot_multi(i):nplots = 16fig = plt.figure(figsize=(15, 15))for j in range(nplots):plt.subplot(4, 4, j+1)plt.imshow(digits.images[i+j], cmap='binary')plt.title(digits.target[i+j])plt.axis('off')# printing the each digits in the dataset.plt.show()
plot_multi(0)

4、使用数据集训练神经网络
神经网络是一组算法,尝试使用类似于人脑工作方式的技术来识别一批数据中的潜在关系。在这种情况下,神经网络是神经元系统,本质上可能是有机的或人造的。
输入层由 64 个节点组成,每个节点对应输入图片中的每个像素。它们只是将输入值发送到下一层的神经元。
这是一个密集的神经网络,这意味着每层中的每个节点都链接到前一层和后一层中的所有节点。
输入层需要一维数组,而图像数据集是二维的。结果,发生了扁平化所有图像的过程:
# converting the 2 dimensional array to one dimensional array
y = digits.target
x = digits.images.reshape((len(digits.images), -1))# gives the shape of the data
x.shape
输出:
(1797, 64)
# printing the one-dimensional array's values
x[0]

5、用于训练和测试的数据分割
当机器学习算法用于根据未用于训练模型的数据进行预测时,将使用训练-测试分割过程来衡量其性能。
这是一种快速而简单的技术,可让您针对预测建模挑战比较机器学习算法的性能。
# Very first 1000 photographs and
# labels will be used in training.
x_train = x[:1000]
y_train = y[:1000]# The leftover dataset will be utilised to
# test the network's performance later on.
x_test = x[1000:]
y_test = y[1000:]
多层感知器分类器的使用
# importing the MLP classifier from sklearn
from sklearn.neural_network import MLPClassifier# calling the MLP classifier with specific parameters
mlp = MLPClassifier(hidden_layer_sizes=(15,),activation='logistic',alpha=1e-4, solver='sgd',tol=1e-4, random_state=1,learning_rate_init=.1,verbose=True)
现在是时候在训练数据上训练我们的 MLP 模型了。
mlp.fit(x_train, y_train)

上图显示了 MLPClassifier 及其各自配置的最后 5 个 epoch 的损失。
将结果可视化
fig, axes = plt.subplots(1, 1)
axes.plot(mlp.loss_curve_, 'o-')
axes.set_xlabel("number of iteration")
axes.set_ylabel("loss")
plt.show()

6、模型评估
现在让我们使用识别数据集或它刚刚记住的数据集来检查模型的性能。我们将使用剩余的测试数据来完成此操作,以便我们可以检查模型是否已经学习了数字中的实际模式 。
predictions = mlp.predict(x_test)
predictions[:50]

但真实标签或者我们可以说真实标签如下所示。
y_test[:50]

因此,通过使用预测标签和真实标签,我们可以找到模型的准确性。
# importing the accuracy_score from the sklearn
from sklearn.metrics import accuracy_score# calculating the accuracy with y_test and predictions
accuracy_score(y_test, predictions)
输出:
0.9146800501882058
📢文章下方有交流学习区!一起学习进步!💪💪💪
📢首发CSDN博客,创作不易,如果觉得文章不错,可以点赞👍收藏📁评论📒
📢你的支持和鼓励是我创作的动力❗❗❗
相关文章:
使用Scikit Learn 进行识别手写数字
使用Scikit Learn 进行识别手写数字 作者:i阿极 作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏…...
GB/T 15036-2018 实木地板检测
实木地板是指未经拼接、覆贴的单块木材直接加工而成的地板,实木地板具有脚感舒适,环保等优良的性能,在家庭装修中被广泛使用,尤其是在国内很受欢迎。 GB/T 15036-2018 实木地板测试介绍: 测试项目 测试方法 外观 G…...
基于ElementUI封装的下拉树选择可搜索单选多选清空功能
效果: 组件代码 /*** 树形下拉选择组件,下拉框展示树形结构,提供选择某节点功能,方便其他模块调用* author wy* date 2024-01-03 * 调用示例:* <tree-select * :height"400" // 下拉框中树形高度* …...
计算机网络-各层协议
大家在搞嵌入式开发的时候基本都了解过七层网络协议、五层网络协议、四层网络协议,那么今天让我们更加的深入了解一下: 历史发展介绍 OSI七层模型由ISO国际标准化组织提出的通信标准。TCP/IP四层模型是OSI七层模型的简化版,OSI在它被官方完…...
LeetCode 84:柱状图中的最大矩形
一、题目描述 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights [2,1,5,6,2,3] 输出:10 解释:…...
老生重谈:大模型的「幻觉」问题
一、什么是大模型「幻觉」 大模型的幻觉问题通常指的是模型在处理输入时可能会产生一些看似合理但实际上是错误的输出,这可能是因为模型在训练时过度拟合了训练数据,导致对噪声或特定样本的过度敏感。 "大数据幻觉"指的是在处理大规模数据时…...
golang实现skiplist 跳表
跳表 package mainimport ("errors""math""math/rand" )func main() {// 双向链表///**先理解查找过程Level 3: 1 6Level 2: 1 3 6Level 1: 1 2 3 4 6比如 查找2 ; 从高层往下找;如果查找的值比当前值小 说明没有可查找的值2比1大 往当前…...
尝试OmniverseFarm的最基础操作
目标 尝试OmniverseFarm的最基础操作。本地机器作为Queue和Agent,同时在本地提交任务。 主要参考了官方文档: Farm Queue — Omniverse Farm latest documentation Farm Agent — Omniverse Farm latest documentation Farm Examples — Omniverse Far…...
第28关 k8s监控实战之Prometheus(二)
------> 课程视频同步分享在今日头条和B站 大家好,我是博哥爱运维。 这节课我们用prometheus-operator来安装整套prometheus服务 https://github.com/prometheus-operator/kube-prometheus/releases 开始安装 1. 解压下载的代码包 wget https://github.com/…...
基于 SpringBoot + magic-api + Vue3 + Element Plus + amis3.0 快速开发管理系统
Tansci-Boot 基于 SpringBoot2 magic-api Vue3 Element Plus amis3.0 快速开发管理系统 Tansci-Boot 是一个前后端分离后台管理系统, 前端集成 amis 低代码前端框架,后端集成 magic-api 的接口快速开发框架。包含基础权限、安全认证、以及常用的一…...
Kafka(四)Broker
目录 1 配置Broker1.1 Broker的配置broker.id0listererszookeeper.connectlog.dirslog.dir/tmp/kafka-logsnum.recovery.threads.per.data.dir1auto.create.topics.enabletrueauto.leader.rebalance.enabletrue, leader.imbalance.check.interval.seconds300, leader.imbalance…...
代码随想录第五十二天——最长递增子序列,最长连续递增序列,最长重复子数组
leetcode 300. 最长递增子序列 题目链接:最长递增子序列 dp数组及下标的含义 dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度递推公式 位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 1 的最大值 所以if (nums[i] > nums[j]) dp[i]…...
【大数据架构】OLAP实时分析引擎选型
OLAP引擎面临的挑战 常见OLAP引擎对比 OLAP分析场景中,一般认为QPS达到1000就算高并发,而不是像电商、抢红包等业务场景中,10W以上才算高并发,毕竟数据分析场景,数据海量,计算复杂,QPS能够达到1…...
代码随想录刷题题Day29
刷题的第二十九天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀 刷题语言:C Day29 任务 ● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 …...
CVE-2023-51385 OpenSSH ProxyCommand命令注入漏洞
一、背景介绍 ProxyCommand 是 OpenSSH ssh_config 文件中的一个配置选项,它允许通过代理服务器建立 SSH 连接,从而在没有直接网络访问权限的情况下访问目标服务器。这对于需要经过跳板机、堡垒机或代理服务器才能访问的目标主机非常有用。 二、漏洞简…...
如何寻找到相对完整的真正的游戏的源码 用来学习?
在游戏开发的学习之路上,理论与实践是并重的两个方面。对于许多热衷于游戏开发的学习者来说,能够接触到真实的、完整的游戏源码无疑是一个极好的学习机会。但问题来了:我们该如何寻找到这些珍贵的资源呢? 开源游戏项目 GitHub:地…...
数模学习day11-系统聚类法
本文参考辽宁石油化工大学于晶贤教授的演示文档聚类分析之系统聚类法及其SPSS实现。 目录 1.样品与样品间的距离 2.指标和指标间的“距离” 相关系数 夹角余弦 3.类与类间的距离 (1)类间距离 (2)类间距离定义方式 1.最短…...
SpringBoot+Redis实现接口防刷功能
场景描述: 在实际开发中,当前端请求后台时,如果后端处理比较慢,但是用户是不知情的,此时后端仍在处理,但是前端用户以为没点到,那么再次点击又发起请求,就会导致在短时间内有很多请求…...
TensorRT加速推理入门-1:Pytorch转ONNX
这篇文章,用于记录将TransReID的pytorch模型转换为onnx的学习过程,期间参考和学习了许多大佬编写的博客,在参考文章这一章节中都已列出,非常感谢。 1. 在pytorch下使用ONNX主要步骤 1.1. 环境准备 安装onnxruntime包 安装教程可…...
springboot常用扩展点
当涉及到Spring Boot的扩展和自定义时,Spring Boot提供了一些扩展点,使开发人员可以根据自己的需求轻松地扩展和定制Spring Boot的行为。本篇博客将介绍几个常用的Spring Boot扩展点,并提供相应的代码示例。 1. 自定义Starter(面试常问) Sp…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
