python 人脸检测与人脸识别
'''
安装库文件: pip install dlib face_recognition
'''import dlib
import face_recognition
import cv2
from PIL import Image, ImageDraw# 判断运行环境 cpu or gpu
def check_env():print(dlib.DLIB_USE_CUDA)print(dlib.cuda.get_num_devices())# 判断人脸在图片当中的位置
def get_face_location(image_flle):image_fr = face_recognition.load_image_file(image_flle)face_locations = face_recognition.face_locations(image_fr)print(face_locations)# 标记人脸的位置image_cv = cv2.imread(image_flle)for location in face_locations:y0, x1, y1, x0 = locationcv2.rectangle(image_cv,(x0,y0),(x1,y1),(0,0,255),4)cv2.imwrite(image_flle + '.new_image.jpg', image_cv)return face_locations# 提取人脸画面保存到本地
def extract_face(image_file):image_cv = cv2.imread(image_file)face_recognitions = get_face_location(image_file)for i, location in enumerate(face_recognitions):y0,x1,y1,x0 = locationface_image = image_cv[y0:y1,x0:x1]cv2.imwrite(f"{image_file}.face_{i}.jpg",face_image)# 把人脸信息编码为一个128维的向量
def encode_face(image_file):image_fr = face_recognition.load_image_file(image_file)face_recognitions = face_recognition.face_locations(image_fr)face_encodings = face_recognition.face_encodings(image_fr,face_recognitions)return face_encodings[0]# 判断2个人脸是否为同一个人
def compare_face(image_file1, image_file2):face_encoding1 = encode_face(image_file1)face_encoding2 = encode_face(image_file2)ret = face_recognition.compare_faces([face_encoding1],face_encoding2)return ret# 标记人脸局部和标识
def mark_face(image_file):image_fr = face_recognition.load_image_file(image_file)face_marks = face_recognition.face_landmarks(image_fr)image_pil = Image.fromarray(image_fr)image_draw = ImageDraw.Draw(image_pil)for face_mark in face_marks:for facial_feature in face_mark.keys():image_draw.line(face_mark[facial_feature],width=5)image_pil.save(f"{image_file}_face_mark.jpg")# 人脸补扮
def beautify_face(image_file):image_fr = face_recognition.load_image_file(image_file)face_marks = face_recognition.face_landmarks(image_fr)image_pil = Image.fromarray(image_fr)for i, face_mark in enumerate(face_marks):image_draw = ImageDraw.Draw(image_pil)# 眉毛image_draw.polygon(face_mark['left_eyebrow'],fill=(68,54,39,128))image_draw.polygon(face_mark['right_eyebrow'],fill=(68,54,39,128))image_draw.line(face_mark['left_eyebrow'],fill=(68,54,39,150),width=2)image_draw.line(face_mark['right_eyebrow'],fill=(68,54,39,150),width=2)# 嘴唇image_draw.polygon(face_mark['top_lip'],fill=(150,0,0,60))image_draw.polygon(face_mark['bottom_lip'],fill=(150,0,0,60))image_draw.line(face_mark['top_lip'],fill=(150,0,0,20),width=2)image_draw.line(face_mark['bottom_lip'],fill=(150,0,0,20),width=2)# 眼睛image_draw.polygon(face_mark['left_eye'],fill=(255,255,255,20))image_draw.polygon(face_mark['right_eye'],fill=(255,255,255,20))image_draw.line(face_mark['left_eye'] + [face_mark['left_eye'][0]],fill=(0,0,0,50),width=2)image_draw.line(face_mark['right_eye'] + [face_mark['right_eye'][0]],fill=(0,0,0,50),width=2)image_pil.save(f"{image_file}.beautify_face.png")def main():check_env()face_locations = get_face_location('1.webp')print(face_locations)extract_face('3.jpg')face_encodings = encode_face('1.webp.face_0.jpg')print(face_encodings)ret = compare_face('1.webp.face_1.jpg','3.jpg.face_1.jpg')print(ret)mark_face('1.webp')beautify_face('1.webp')if __name__=="__main__":main()
相关文章:
python 人脸检测与人脸识别
安装库文件: pip install dlib face_recognition import dlib import face_recognition import cv2 from PIL import Image, ImageDraw# 判断运行环境 cpu or gpu def check_env():print(dlib.DLIB_USE_CUDA)print(dlib.cuda.get_num_devices())# 判断人脸在图片当中的位置 def…...

RT-Thread: ulog 日志 讲解和使用
说明:记录 RT-Thread: ulog 日志功能和使用流程。 官网资料链接: https://docs.rt-thread.org/#/rt-thread-version/rt-thread-standard/programming-manual/ulog/ulog 1.ulog 简介 日志的定义:日志是将软件运行的状态、过程等信息&#x…...

git ssh key 配置
一、Profile Settings-->SSH Keys 我们点击这里会有详情的文档介绍生成sshkey。 ssh-keygen -t rsa -b 2048 -C "邮箱" --回车... 将生成的id_rsa.pub粘贴到如下保存 git config --global user.name "用户名" git config --global user.email "邮…...
MongoDB聚合:$documents
$documents阶段可以根据输入值返回字面意义的文档。 语法 { $documents: <表达式> }$documents接受可解析为对象数组的任何有效表达式,包括: 系统变量,如 $$NOW 或 $$SEARCH_META $let 表达式 $lookup 表达式作用域中的变量 没有…...
程序员英语 - 英文会议常用句型
相信大部分程序员都会有如下经历: 产品经理(BA)们在和外系统聊集成方案时或者给用户解决某个问题时发现搞不定了,这个时候就会拉上程序员一起上会参与讨论或者排查问题,但程序员们英文又不好,上了会又听不懂…...

UV贴图和展开初学者指南
在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 介绍 这正是本文的主题——UV贴图——登上舞台的时候。大多数 3D 建…...
解密Path环境变量
解密Path环境变量 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,让我们一起深入探讨程序开发中不可或缺的一项关键技术——“path环境变量”。无论…...

git撤销提交到本地的commit
有些时候,当我们提交代码到本地后,突然发现因为某些原因需要撤销提交本地的代码。 就比如我,因为代码写错了分支,已经提交到本地了,而我需要取消,并且还要把代码搞得另外的分支上。 提交前: …...

使用Adobe Acrobat Pro DC给pdf文件填加水印
前言 GPT4的官方售价是每月20美元,很多人并不是天天用GPT,只是偶尔用一下。 如果调用官方的GPT4接口,就可以按使用量付费,用多少付多少,而且没有3个小时内只能提问50条的使用限制。 但是对很多人来说调用接口是比较麻烦…...

解决:Unity : Error while downloading Asset Bundle: Couldn‘t move cache data 问题
目录 问题: 尝试 问题得到解决 我的解释 问题: 最近游戏要上线,发现一个现象,部分机型在启动的时候闪退或者黑屏,概率是5%左右,通过Bugly只有个别机型才有这个现象,其实真实情况比这严重的多…...

SpringBoot默认配置文件
✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容:SpringBoot默认配置文件 📚个人知识库: Leo知识库,欢迎大家访问 1.前言☕…...

Flink构造宽表实时入库案例介绍
1. 安装包准备 Flink 1.15.4 安装包 Flink cdc的mysql连接器 Flink sql的sdb连接器 MySQL驱动 SDB驱动 Flink jdbc的mysql连接器 2. 入库流程图 3. Flink安装部署 上传Flink压缩包到服务器,并解压 tar -zxvf flink-1.14.5-bin-scala_2.11.tgz -C /opt/ 复…...
【Kubernetes】K8s 查看 Pod 的状态
K8s 查看 Pod 的状态 [rootk8s-master1 ~]# kubectl get pods NAME READY STATUS RESTARTS AGE nginx-3 1/1 Running 2 (34m ago) 14hNAME:Pod 的名称。READY:代表 Pod 里面有几个容器,前面是启动的,后面…...

Linux系统操作命令
Linux管理 在线查询Linux命令: https://www.runoob.com/linux/linux-install.htmlhttps://www.linuxcool.com/https://man.linuxde.net/ 1.Linux系统目录结构 Linux系统的目录结构是一个树状结构,每一个文件或目录都从根目录开始,并且根目…...

大模型学习与实践笔记(五)
一、环境配置 1. huggingface 镜像下载 sentence-transformers 开源词向量模型 import os# 设置环境变量 os.environ[HF_ENDPOINT] https://hf-mirror.com# 下载模型 os.system(huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-…...

100个GEO基因表达芯片或转录组数据处理之GSE126848(003)
写在前边 虽然现在是高通量测序的时代,但是GEO、ArrayExpress等数据库储存并公开大量的基因表达芯片数据,还是会有大量的需求去处理芯片数据,并且建模或验证自己所研究基因的表达情况,芯片数据的处理也可能是大部分刚学生信的道友…...
1. Presto基础
该笔记来源于网络,仅用于搜索学习,不保证所有内容正确。文章目录 一、presto基础操作二、时间函数0、当前日期/当前时间1、转时间戳1)字符串转时间戳 (推荐)2)按照format指定的格式,将字符串str…...

ChatGPT可以帮你做什么?
学习 利用ChatGPT学习有很多,比如:语言学习、编程学习、论文学习拆解、推荐学习资源等,使用方法大同小异,这里以语言学习为例。 在开始前先给GPT充分的信息:(举例) 【角色】充当一名有丰富经验…...

20240111在ubuntu20.04.6下解压缩RAR格式的压缩包
20240111在ubuntu20.04.6下解压缩RAR格式的压缩包 2024/1/11 18:25 百度搜搜:ubuntu rar文件怎么解压 rootrootrootroot-X99-Turbo:~/temp$ ll total 2916 drwx------ 3 rootroot rootroot 4096 1月 11 18:28 ./ drwxr-xr-x 25 rootroot rootroot 4096 1月…...

YOLOv5改进 | 检测头篇 | ASFFHead自适应空间特征融合检测头(全网首发)
一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv5的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...